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1 Programs to Assist in Implementing the Pesaran,

Shin and Smith (2001) ARDL Procedure

I have designed a number of programs to aid in implementing the ARDL procedure

proposed in the main paper. Current working versions are available for download

on GitHub.1 The Stata command pssbounds aids users by providing the critical

values necessary for conducting the bounds test for cointegration (Philips 2016b).

The Stata command dynpss is designed to dynamically simulate ARDL models over

time, allowing the user to plot predicted values and their response to changes in

the regressors (Philips 2016a). Examples are shown on the program websites. In

addition, this approach has been adapted for R under the package pss (Jordan and

Philips 2016), which is also available on GitHub.2 As of December 2016, only the

pssbounds function is fully supported by pss; the dynpss function is still in the

development and testing stage. I discuss these programs below.

1.1 pssbounds

The Stata command pssbounds is designed to provide users with the critical val-

ues necessary to conduct the autoregressive distributed lag (ARDL) bounds testing

procedure recommended by Pesaran, Shin and Smith (2001). The most current ver-
1 Users can download dynpss at the following link: http://andyphilips.github.io/dynpss, and

pssbounds at: http://andyphilips.github.io/pssbounds. Download the zip file, unzip and place the
program (.ado) and the help file (.hlp) in your “ado/plus/” folder. To find out where this is, type
sysdir in Stata.

2Later versions will be released on CRAN. The current version can be found here, along with
instructions about how to download from GitHub to R: https://github.com/andyphilips/pss.
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sion can be found on GitHub: http://andyphilips.github.io/pssbounds. For help on

installing user-written .ado files in Stata, see Footnote 1.

As outlined in the main paper, the user must first run an ARDL model in error

correction form. Then, after introducing lagged first differences of the series as

necessary in order to ensure white-noise residuals, the user can conduct the bounds

F- and t-tests for cointegration. While Pesaran, Shin and Smith (2001) provide

asymptotic critical values for the F- and t-statistics, and Narayan (2005) provides

finite-sample F-statistics, pssbounds provides the user with these critical values in

Stata without having to look them up. The command appears as the following:

pssbounds, observations(#) fstat(#) case(#) k(#) [tstat(#)]

Required options are:

• observations(#) is the number of observations (the length of the series) from

the ARDL-bounds model. Small-sample critical values of the bounds test de-

pend on the size of the sample; therefore, this option is required.

• fstat(#) is the value of the F-statistic from the test that all variables appearing

in levels are jointly equal to zero. This can be obtained using Stata’s test

command.3 This option is required.

• case(#) identifies the type of case and thus which restrictions (if any) to

impose on the intercept and/or trend term. Case type can be written in Roman

numerals (I, II, III, IV, and V) or numerically (1, 2, 3, 4, and 5). Since the
3e.g., test l.y l.x1 l.x2.
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critical values of the bounds test depend on the restrictions placed on the

intercept and trend, this option is required. By far the most common is an

unrestricted intercept with no trend term: case(3). Other types that are

supported are:

– Case I: No intercept and no trend, case(1).

– Case II: Restricted intercept and no trend, case(2).

– Case IV: Unrestricted intercept and restricted trend, case(4).

– Case V: Unrestricted intercept and unrestricted trend, case(5).

• k(#) is the number of regressors appearing in levels in the ARDL-bounds

model. Since the critical values of the bounds test depend on the number of

regressors, this option is required.

Additional options are:

• tstat(#) is the value of the one-sided t-test that the coefficient on the lagged

dependent variable is equal to zero. Only asymptotic critical values from the

bounds test are available for this test, and only for cases 1, 3, and 5.

1.2 dynpss

dynpss is a Stata command to dynamically simulate autoregressive distributed lag

(ARDL) models like the ones discussed in the main paper. The most current version

can be found on GitHub: http://andyphilips.github.io/dynpss. For help on installing

user-written .ado files in Stata, see Footnote 1.
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Before using dynpss, it is assumed the user has already determined the order

of integration of the dependent variable, ensured no regressor is of an order of in-

tegration higher than I(1) (or contains other issues such as seasonal unit roots),

used information criteria (and theory) to identify the best fitting lagged-difference

structure, which is used to purge autocorrelation and to ensure the residuals are

white noise, and also to have performed the bounds test and determined if there is

cointegration (and if there is not, adjusted the model accordingly).

dynpss is designed to dynamically simulate the effects of a counterfactual change

in one weakly exogenous regressor at a single point in time, holding all else equal,

using stochastic simulation techniques. This approach is gaining in popularity as a

simple way to show the substantive results of time series models (Williams and Whit-

ten 2011; Philips, Rutherford and Whitten 2016a; Gandrud, Williams and Whitten

2016; Philips, Rutherford and Whitten 2016b). Since the ARDL model discussed in

this paper can produce models that are somewhat complicated to interpret, dynpss

is designed to ease this burden through the creation of predicted (or expected) val-

ues of the dependent variable (along with associated confidence intervals), which can

then be plotted to show how a change in one variable “flows” through the model over

time.

dynpss first runs a linear regression. Then, using a self-contained procedure

similar to the popular Clarify program (Tomz, Wittenberg and King 2003), it takes

1000 (or however many simulations a user desires) draws of the vector of parameters

from a multivariate normal distribution. These distributions are assumed to have

means equal to the estimated parameters from the regression, and a variance equal
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to the estimated variance-covariance matrix from the regression. In order to re-

introduce stochastic uncertainty back into the model when creating predicted values,

dynpss simulates σ2 by taking draws from a scaled inverse χ2 distribution. The

distribution is scaled by the residual degrees of freedom (n-k), as well as the estimated

σ̂2 from the regression (Gelman et al. 2014, pp. 43,581). This ensures that draws of

σ2 are bounded by zero and one. Simulated parameters and sigma-squared values

are then used to create predicted Ŷt values over time by setting all covariates to

certain values (typically means), and introducing stochastic uncertainty back into the

prediction by taking a draw from a multivariate normal distribution with mean zero

and variance σ̂2. The program then obtains the average Ŷt and percentile confidence

intervals of the distribution of predicted values at a particular point in time. These

are then saved, allowing a user to make a table or (more commonly) a graph of the

results.

The command appears as the following:

dynpss depvar indepvars [, options]

the options below are required:

• lags(numlist) is a numeric list of the number of lags to include for each

variable. The number of desired lags is listed in the order in which the variables

depvar and indepvars appear. For instance, in a model with two weakly

exogenous variables, we lag all variables by specifying: lags(1 1 1). Note

that the lag on depvar (the first “1”) must always be specified. To estimate a

model without a lag for a particular variable, simply replace the number with a

8



“.”; for instance, if we did not want a lag on the first regressor, we type: lags(1

. 1). If a higher number of lags are specified, dynpss will add consecutive

lags. For instance, lags(3 . .) will introduce lags of yt at t − 1, t − 2, and

t −3 into the model.

• shockvar(varname) is a single independent variable from the list of indepvars

that is to be shocked. It will experience a counterfactual shock of size shockval(#)

at time time(#).

• shockval(#) is the amount to shock shockvar(varname) by. Most commonly,

a +/- one standard deviation shock is specified.

The following options are not required:

• diffs(numlist) is a numeric list of the number of contemporaneous first dif-

ferences (i.e., t − (t −1)) to include for each variable. Note that the first entry

(the placeholder for the depvar) will always be empty (denoted by “.”), since

the first difference of the dependent variable cannot appear on the right-hand

side of the model.4

• lagdiffs(numlist) is a numeric list of the number of lagged first differences to

include for each variable. For instance, to include a lag at t−2 for depvar, a lag

at t−1 for the first weakly exogenous regressor, and none for the second, specify

lagdiff(2 1 .). NOTE: the current version does not allow for consecutive
4It can however, appear in lagged first differences, as shown below.
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lagged differences.5

• level(numlist) is a numeric list of variables to appear in levels (i.e., not

lagged or differenced but appearing contemporaneously). If both level( )

and ec are specified, dynpss will issue a warning message.6

• ec if specified, depvar will be estimated in first differences. If estimating an

error correction model, users will need to use this option.

• range(#) is the length of the scenario to simulate. By default, this is t = 20.

Note that the range must be larger than time( ).

• sig(#) specifies the significance level for the percentile confidence intervals.

The default is for 95% confidence intervals.

• time(#) is the scenario time in which the shock occurs to shockvar( ). The

default time is t = 10.

• saving(string) specifies the name of the output file. If no filename is speci-

fied, the program will save the results as “dynpss_results.dta”.

• forceset(numlist) by default, the program will estimate the ARDL model

in equilibrium; all lagged variables and variables appearing in levels are set to

their sample means. All first differences and any lagged first differences are

set to zero. This option allows the user to change the setting of the lagged (or
5Using the lagdiff(2 1 .) example, this means that ∆yt−2 and ∆x1t−1 will be included, but

not: ∆yt−1.
6Of course, users may have a valid reason to include a variable in levels; for instance, a dummy

variable.
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unlagged if using levels( )) levels of the variables. This could be useful when

estimating a dummy variable. For instance, when we wish to see the effect of

a movement from zero to one.

• sims(#) is the number of simulations (default is 1000). If confidence intervals

are particularly noisy, it may help to increase this number. Note that you may

also need to increase the matsize in Stata.

• burnin(#) allows dynpss to iterate out so starting values are stable. This

option is rarely used. However, if using the option forceset( ), the predicted

values will not be in equilibrium at the start of the simulation, and will take

some time to converge on stable values. To get around this, one can use the

burnin option to specify a number of simulations to “throw out” at the start.

By default, this is 20. Burnins do not change the simulation range or time;

to simulate a range of 25 with a shock time at 10 and a burnin of 30, specify:

burnin(30) range(25) time(10).

• graph although dynpss saves the means of the predicted values and user-

specified confidence intervals in saving, users can use this option to auto-

matically plot the dynamic results using a spikeplot. As an alternative, by

adding the option rarea, the program will automatically create an area plot.

Predicted means along with 75, 90, and 95 percent confidence intervals are

shown using the area plot.

• expectedval by default, dynpss will calculate predicted values of the depen-

dent variable for a given number of simulations. For every simulation, the
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predicted value comes from a systematic component as well as a single draw

from the stochastic component. With the expectedval option, the program

instead calculates expected values of the dependent variable such that the av-

erage of 1000 stochastic draws now becomes the estimate of the stochastic

component for each of the simulations. This effectively removes the stochastic

uncertainty introduced in calculating Ŷt . Predicted values are more conserva-

tive than expected values. Note that dynpss takes longer to run if calculating

expected values.

Users can find examples using dynpss on the program’s website: http://andyphilips.github.io/dynpss.

1.3 pss

The R package pss has been developed to implement both pssbounds and dynpss

in R (Jordan and Philips 2016). Since this package is still under development, the

current version only allows for the pssbounds function to be run. Users can find

this package on GitHub by using this link: https://github.com/andyphilips/pss; it

also contains details about how to use the devtools package (Wickham and Chang

2015) to load pss into R. In future iterations of this package, pss will be uploaded

to CRAN.

The pssbounds function appears as the following:

pssbounds(obs, fstat, tstat = NULL, case, k)

the following options are required:
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• obs is the number of observations (i.e., length of the series) from the ARDL-

bounds model. Since the critical values of the bounds test depend on the size

of the sample, this option is required.

• fstat is the value of the F-statistic from the test that all variables appearing

in levels are jointly equal to zero.

• case identifies the type of case of the restrictions on the intercept and/or trend

term. Case type can be given in Roman numerals (“I”,“II”,“III”,“IV”,“V”) or

numerically (1,2,3,4,5). Since the critical values of the bounds test depend on

the assumptions placed on the intercept and trend, this option is required.

• k is the number of regressors appearing in levels in the ARDL-bounds model.

Since the critical values of the bounds test depend on the number of regressors,

this option is required.

An additional option, tstat, is the value of the one-sided t-test that the coefficient

on the lagged dependent variable is equal to zero. Only asymptotic critical values

are currently available, and only for cases I, III, and V.

2 Summary of Monte Carlo Results

In the next section, I implement eight Monte Carlo experiments. For brevity, the

results from these experiments are summarized in Table 1. I first examine the level

of Type II error when varying the adjustment parameter and long-run multiplier. I
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find that “fast-moving” adjustment parameters are easier to detect with cointegration

tests. Thus, the slow-moving adjustment parameter results shown in the main article

should be seen as an especially difficult scenario for cointegration testing. I also

evaluate how often a given cointegration test avoids Type I or II error when the other

three tests commit these errors. I find that if the bounds test concludes cointegration,

it is very likely it exists. If the bounds test does not find cointegration in short series

(T ≤ 50) with more than one regressor, it is advisable to side with the other three

cointegration tests (assuming they all conclude cointegration). In long series, users

should only rely on the bounds test since the rate of Type II error is low. In addition, I

examine how well the ARDL-bounds and Engle-Granger cointegration tests perform

for fractionally cointegrated data-generating processes. Results suggest that both

tests have high rates of Type I error when the series have finite variance, but less

so (especially for the ARDL-bounds) when it has infinite variance. Both procedures

have extremely low rates of Type II error.

While cointegration testing is important, so too is the ability to get our substan-

tive hypotheses correct.7 The last four Monte Carlo experiments in the Supplemental

Materials examine the ability to recover the short- and long-run effect, coefficient on

the lagged independent variable, and adjustment parameter for a cointegrating re-

lationship. I find that the short-run effect is often recovered, but that the long-run

effect is often over- or underestimated. Adjustment parameters tend to converge on

their true value as the length of the series increase. I next examine how well the

ARDL-bounds and GECM recover null effect sizes (i.e., when the I(1) series are not
7This is similar to the approach taken by Enns et al. (2016).
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cointegrating). I find that while the short-run effect of zero is often recovered, both

the GECM and ARDL-bounds often show statistically significant long-run effects,

underscoring the importance of testing for cointegration before running these models.

In the last two experiments, I examine the ability of the GECM and ARDL-bounds

models to recover actual and spurious stationary relationships. Similar to the I(1)

example, I find that the true short-run effect is almost always recovered, while the

long-run effect often is not. This is because the long-run effect is a combination

of the coefficient on the lagged independent variable—which is recovered at rates

similar to the short-run effect—and the adjustment parameter, which is sensitive to

the length of the series and the level of autocorrelation.

The full setup, results, and discussion from these eight Monte Carlo experiments

can be found below.

3 Additional Monte Carlo Results

In the main paper, I examined the ability of the bounds test to fail to reject the null

hypothesis of no cointegration when the null hypothesis is true (avoid Type I error)

and correctly reject the null when it is false (avoid Type II error). This was compared

to the most common test for cointegration (the Engle-Granger procedure), as well

as the Johansen test for cointegration, using both Rank and BIC statistics. One of

the crucial steps before running the bounds test is to ensure that no autocorrelation

remains in the residuals. In the main paper, I made a restriction of four lags per

variable for nearly all simulations; the one exception being for the simulations with 35
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observations, which had a maximum of three lags per variable. For example, if there

were three independent variables and 50 observations, up to 16 lags (four for each

of the three xkt variables and four for yt) of the first differences were possible. The

simulations were designed to iterate through possible lag combinations, choosing the

one with the smallest SBIC. Note that augmenting lags with the same restrictions

were allowed for both the Engle-Granger and Johansen procedures.

In order to be as comprehensive as possible, I conducted a number of addi-

tional Monte Carlo simulations which are presented in this section. These include

an examination of the “discordant rates” of the four cointegration tests, fractional

integration and the performance of the ARDL-bounds procedure, and the ability of

the ARDL-bounds procedure to recover effect sizes (or lack thereof) of cointegrating

or stationary data-generating processes.

3.1 Lags and Overfitting in the Monte Carlo Analysis

Since overfitting in small series poses a danger for inference, I calculated the average

number of lagged first-differences needed to minimize SBIC from the two main Monte

Carlo experiments in the main paper, along with the standard deviations. These are

shown in Table 2.

Recall that for the Type I Monte Carlo simulation in the main paper, I generated

up to four xkt series that were completely unrelated to the dependent variable, yt .

Since these series cannot possibly be cointegrating (in addition, the variable x1t was

often autoregressive instead of a unit root), it is not surprising a number of lagged
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Table 2: Average Number of Lagged First-Differences: Monte Carlo Simulations in
the Main Paper

Type I Type II
T Number of X Mean Std. Dev. Mean Std. Dev

35

1 2.10 1.98 2.04 1.96
2 3.04 2.73 2.86 2.67
3 4.35 3.79 3.98 3.71
4 7.49 4.68 7.18 4.84

50

1 0.18 0.76 0.23 0.86
2 0.33 1.28 0.43 1.51
3 0.75 2.31 0.82 2.37
4 1.93 4.33 2.31 4.66

80

1 0.09 0.52 0.07 0.48
2 0.08 0.60 0.08 0.55
3 0.07 0.64 0.12 0.89
4 0.08 0.77 0.13 1.09

Note: Table shows the average number of lagged first-differences across both Monte Carlo experi-
ments (e.g., “Type I” and “Type II” error). The combination of lags was chosen to minimize SBIC.
A restriction of a maximum of 4 lags for the dependent and each independent variable was imposed
for T = 50,80 and a restriction of 3 was imposed for T = 35.
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first-differences were needed in order to optimize SBIC, especially when a series

had only 35 observations. Yet, as shown in Table 2, as the number of observations

increase, the average number of lagged-first differences needed in a model sharply

decreases; when the series are 80 or more, the average number of lags converges on

zero, even when there are four regressors in the model.

For the Monte Carlo simulation investigating Type II error in the main paper,

I created a cointegrating relationship between the dependent and independent vari-

ables and examined if the cointegration tests could detect this relationship. The

average number of lagged first-differences needed to minimize SBIC is remarkably

similar across both the Type I and Type II simulations. A large number of lagged

first-differences are necessary when the series contain only 35 observations; on aver-

age over seven are necessary when there are four independent variables. However,

for 50 and 80 observations, the average number of lagged first-differences necessary

to minimize SBIC is nearly always below one.

To conclude, I find that while lagged first-differences are necessary in order to

proceed with the bounds cointegration testing procedure, they appear to be in danger

of overfitting only in extremely short samples (i.e., T = 35). Therefore, practitioners

should use SBIC in conjunction with autocorrelation tests—as well as theory—to

ensure that the residuals are white noise. If a model with five lags minimizes SBIC

more than a model of two lags, but both appear to contain white noise residuals,

users should pick the more parsimonious one in short series so as not to overfit their

model. Users should also take care not to include too many regressors in short series;

one suggestion put forth by Keele, Linn and Webb (2016, p. 40) suggests a minimum
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of between 10 and 20 observations per parameter estimated.

3.2 Type II Error of the Cointegration Tests: Varying Ad-

justment Parameters and Long-Run Multipliers

Although the second Monte Carlo experiment in the main paper varied the number

of observations and the number of cointegrating regressors, the size of the long-

run effect, as well as the rate of adjustment, may also influence the performance

of these cointegration tests, since these parameters determine the magnitude (the

accumulated effect that a change in xt has on yt) and speed of the cointegrating

relationship (how fast a move to disequilibrium corrects back to a stable equilibrium).

To investigate this I created another Monte Carlo experiment to examine Type II

error. I hold the number of observations (T = 50) and regressors (k = 3) fixed. The

following data-generating process was used, which is somewhat similar to the second

Monte Carlo experiment in the main paper:

xkt = xkt−1+νkt (1)

ut = α1ut−1+ηt (2)

yt = κ1x1t +κ2x2t +κ3x3t +ut (3)

Note that the errors νkt and ηt are independent. Using the same four cointegra-

tion tests as in the main paper (bounds, Engle-Granger, Johansen (rank), Johansen

(SBIC)), I conducted 500 simulations across each of the following combinations:

20



• Varying the adjustment parameter: α1 = 0.01,0.30,0.60,0.90,0.99

• Varying the size of the long-run multiplier for each of the three series xkt :

κk = 0.01,3.0,5.0. Note that each series has the same magnitude for the long-

run multiplier.

The results of the third Monte Carlo experiment are shown as contour plots in

Figure 1. The long-run multiplier of the series, xkt , is shown on the horizontal axis.

The adjustment parameter is shown on the vertical axis, as it would appear in an

error-correction model; adjustment parameters approaching zero indicate a slow rate

of adjustment, while those approaching -1 indicate a fast rate of adjustment back

to equilibrium. Lighter regions on the contour plot indicate a low proportion of

simulations that find evidence of cointegration (high Type II error), while darker

regions indicate that the test correctly finds evidence of cointegration at higher rates

(low Type II error).

It is clear from Figure 1 that in terms of Type II error, the bounds test falls

somewhere between the Engle-Granger and Johansen tests. This confirms the find-

ings from the second Monte Carlo experiment in the main paper. All tests tend to

find cointegration only about 10 to 20 percent of the time if the adjustment parame-

ter is slow-moving, yet this increases to over 60 percent as the adjustment parameter

converges on -1. The Engle-Granger approach still appears to be the best-performing

cointegration test for Type II error, since it is able to find cointegration over 60 per-

cent of the time, as long as the adjustment parameter is between -0.30 and -1. The

bounds test finds cointegration over 60 percent of the time when the adjustment
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parameter is between -0.6 and -1, and the Johansen tests (both rank and BIC), be-

tween -0.90 and -1. Although the bounds test has a higher rate of Type II error than

the Engle-Granger procedure, it tends to perform better than either of the Johansen

tests.

It is also clear from Figure 1 that the Type II error simulation in the main paper

was an especially difficult experiment for the cointegration tests. In that experiment,

the adjustment parameter was fixed at −0.25, a relatively slow rate. As shown in

Figure 1, it is hard to detect cointegration when the adjustment parameter is slow.

Figure 1 also shows that the size of the long-run effect makes almost no difference

in terms of performance, as evidenced by only slight variation across the horizon-

tal axis. Thus, we can conclude from these results that all cointegration tests are

better at picking up cointegration when the rate of adjustment is fast, and that the

magnitude of the long-run multiplier has virtually no effect on Type II error rates.

3.3 Discordant Cointegration Tests

The two Monte Carlo experiment results in the main paper are just one way of

evaluating cointegration tests. Since all four cointegration tests were run on the

same data generated for each of the simulations, another way to evaluate them is to

observe how often a cointegration test correctly (incorrectly) identifies cointegration

when all other tests fail (succeed) in doing do so.8 These “discordant” Monte Carlo

results can be examined for both Type I and Type II error.
8I thank an anonymous reviewer for suggesting this.
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For the Type I error, a “correct discordant” result is when a particular cointegra-

tion test correctly finds evidence of no cointegration when all others erroneously find

cointegration. An “incorrect discordant” result is when a particular cointegration

test incorrectly rejects the null hypothesis of no cointegration when all other tests

fail to reject the null. The opposite is true for Type II error; a correct discordant

result means the test identifies cointegration when all other tests do not, and an

incorrect result means that a test fails to find cointegration when all other tests do:

• Type I Error, Correct Discordant: How often does a cointegration test find

evidence of no cointegration when all other tests erroneously find cointegration?

• Type I Error, Incorrect Discordant: How often does a cointegration test

find evidence of cointegration when all other tests correctly fail to find cointe-

gration?

• Type II Error, Correct Discordant: How often does a cointegration test

find evidence of cointegration when all other tests fail to find cointegration?

• Type II Error, Incorrect Discordant: How often does a cointegration

test fail to find evidence of cointegration when all other tests correctly find

cointegration?
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3.3.1 Type I Error, Correct Discordant

The proportion of correct discordant simulations that avoid Type I error is shown

in Figure 2.9 Higher values are more desirable, since they correspond with a higher

proportion of times that the cointegration test avoided Type I error when all other

tests committed it. Across these results the bounds test is the clear outlier. When

there are four independent variables, the bounds test avoids Type I error when the

three other cointegration tests all commit Type I error—between 9 and 14 percent of

the time—depending on the length of the series. The rates of discordant results for

the bounds test gets substantially larger as the number of independent variables in-

creases, yet only incrementally increases as the length of the series increases. In sum,

these results suggest that the bounds test often correctly avoids a false conclusion of

cointegration when all other tests erroneously do.

3.3.2 Type I Error, Incorrect Discordant

For the Type I Monte Carlo simulations, we can also examine how often a cointe-

gration test commits Type I error when all other tests avoid it. This is shown in

Figure 3. In this figure, lower values are preferred since they indicate that the coin-

tegration test seldom (erroneously) diverges from the other tests to find evidence of

cointegration when it does not exist.

As with Figure 2, there are very little differences in discordant rates across the

number of observations; as expected, the likelihood of committing Type I error when
9These results use the same data as the ones discussed in the main paper.
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Figure 2: Discordant At Avoiding Type I Error Across the Four Cointegration Tests

Note: An instance of correct discordant means that cointegration test C does not find cointegration
(avoids Type I error) when all other tests erroneously find cointegration (commit Type I error).
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Figure 3: Discordant At Committing Type I Error Across the Four Cointegration
Tests

Note: An instance of incorrect discordant means that cointegration test C erroneously finds cointe-
gration (commits Type I error) when all other tests fail to find cointegration (avoid Type I error).
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all other tests do not tends to decrease as the series get longer. However, there

are substantial differences as the number of independent variables increase. When

there is one independent variable, the Johansen BIC incorrectly finds evidence of

cointegration between 20 and 30 percent of time, when all other tests do not. For two

independent variables, this is sharply reduced. All of the tests—with the exception

of the bounds test—commit Type I error when all other tests do not between 5 and

10 percent of the time. When the number of independent variables is three or larger,

the Engle-Granger procedure stands out; it diverges from the other three tests to

incorrectly find evidence of cointegration about 22 percent of the time. Moreover,

this appears to get worse as the number of observations increase. This is an important

finding since the Engle-Granger approach is by far the most common method used

to test for cointegration (Gonzalo and Lee 1998). Therefore, users should employ

more than one cointegration test to avoid an incorrect discordant finding using the

Engle-Granger test. Last, once again the ability of the bounds test to avoid Type I

error stands out. The bounds test will incorrectly conclude cointegration when all

other tests do not less than five percent of the time when T = 35. When T = 80, this

proportion is effectively zero.

3.3.3 Type II Error, Correct Discordant

The discordant plots also shed light on the relative performance of the cointegration

tests in terms of avoiding Type II error. In Figure 4, I plot the proportion of simu-

lations when a cointegration test correctly finds cointegration (avoids Type II error)
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when all other tests fail to find cointegration (commit Type II error).10 In contrast

with the Type I results above, the Engle-Granger procedure now stands out as being

able to identify true instances of cointegration when all other tests fail to do so. It

correctly diverges from the other tests between 30 and 50 percent of the time. This

is consistent with the evidence in the main paper that finds that the Engle-Granger

test outperformed the other three cointegration tests at finding cointegration when

it exists.11

3.3.4 Type II Error, Incorrect Discordant

For the last comparison, Figure 5 shows the proportion of times a particular coin-

tegration test fails to find evidence of cointegration (commits Type II error) when

all other tests find cointegration (avoid Type II error). In contrast with the other

results in this section, the number of observations seems to matter substantially for

this type of discordant result. For 35 observations, the bounds test stands out at

failing to find cointegration when all others detect it; this rises from about 5 percent

of the time for one independent variable to about 15 percent of the time when there

are four independent variables. When there are 50 observations, the bounds test per-

forms better, with rates almost always below five percent. In contrast, the Johansen

Rank test for cointegration performs badly when there is only one independent vari-

able. For 80 observations, the rank test appears to often fail to find cointegration

when all others detect it when there is only a single independent variable. As the
10These data are from the second Monte Carlo experiment in the main paper.
11Although note that these results are from the case where the rate of adjustment is very slow-

moving; as Section 2.2 shows, all Type II error rates fall as α1 converges on −1.

29



Bounds

Engle-Granger

Johansen Rank

Johansen BIC

0 .2 .4 .6

4

3

2

1

35 Obs

Bounds

Engle-Granger

Johansen Rank

Johansen BIC

0 .2 .4 .6

4

3

2

1

50 Obs

Bounds

Engle-Granger

Johansen Rank

Johansen BIC

0 .2 .4 .6

4

3

2

1

80 Obs

N
um

be
r 

of
 X

 V
ar

ia
bl

es

Proportion Correctly Finding Cointegration When All Other Tests Do Not

Figure 4: Discordant At Avoiding Type II Error Across the Four Cointegration Tests

Note: An instance of correct discordant means that cointegration test C finds cointegration (avoids
Type II error) when all other tests fail to find cointegration (commit Type II error).
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number of independent variables increase, the Johansen BIC often fails to find coin-

tegration when all other tests detect it. In contrast, when there are 80 observations,

the bounds test performs better relative to the two Johansen tests as the number of

independent variables increase.
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Figure 5: Discordant At Committing Type II Error Across the Four Cointegration
Tests

Note: An instance of incorrect discordant means that cointegration test C fails to find cointegration
(commits Type II error) when all other tests find cointegration (avoid Type II error).
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3.3.5 Suggestions for Practitioners for Cointegration Testing

The findings of these Monte Carlo results are largely consistent with the ones in the

main paper. Below are several recommendations for practitioners:

• In general, the bounds test excels at avoiding Type I error. It appears to also

handle multiple independent variables well, performs well in small samples, and,

as shown in the main paper, it remains robust to the accidental inclusion of a

stationary regressor. This may be an advantage when using short series (which

are common in political science), since unit-root testing is difficult on such

series—and, with multiple regressors—we increase the likelihood of accidentally

mis-diagnosing at least one as I(0) or I(1). However, the bounds test seems

to lack performance in extremely short series, as the results for Type II error

for 35 observations showed. Moreover, while it appears to avoid Type II error

at higher rates than the Johansen tests, it is still much lower than for the

Engle-Granger procedure.

• As shown in the previous section, all cointegration tests are better at detecting

cointegration with a fast rate of error correction (adjustment parameter near

-1.0) than a slow rate (near -0.0). Therefore, it makes sense to rely more

on the bounds test when the adjustment parameter is near -1.0, since it is

likely to avoid Type I error yet still have the power to pick up true instances

of cointegration. If the adjustment parameter is near -0.0, the Engle-Granger

results may be more believable since it is hard for any of the cointegration tests

to pick up true instances of cointegration with a slow adjustment parameter.
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In addition, I find that the size of the long-run multiplier appears to make no

difference in terms of Type II error.

• It is often the case that practitioners utilize multiple statistical tests in or-

der to establish whether or not their conclusion remains robust. However, as

the discordant plots have shown, there are often substantial differences among

cointegration tests. As shown in the Monte Carlo results in this section, the

bounds test often avoids a spurious conclusion of cointegration when all other

tests fail to do so. Likewise, the Engle-Granger procedure tends to find truly

cointegrating series when all other tests fail to do so. Therefore, there are

many times in which going with a “majority” of test results might lead to in-

correct conclusions about the nature of the data. Ultimately, the best solution

may be reporting results from a large number of unit root and cointegration

tests, and—assuming these tests diverge—probing the robustness of the results

when different pathways for model specification are considered, as shown by

the schematic figure in the main paper. I provide an example of this strategy

in the section, “Different conclusions about the time series properties of welfare

mood” below.

3.4 Fractional Integration and the ARDL Procedure

Although the method of Pesaran, Shin and Smith (2001) is designed to be run only

when the dependent variable is I(1), to the best of my knowledge there has been

no analysis of the performance of the bounds test for cointegration when series are
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fractionally cointegrated in small samples.12 This section does not advocate using

the bounds procedure over methods designed to handle fractional integration (c.f.

Box-Steffensmeier and Smith 1998; Grant and Lebo 2016). Nor does it discuss the

performance of approaches designed to model fractional integration; this has recently

been investigated in small series like the ones discussed in the main paper (Helgason

2016; Esarey 2016; Keele, Linn and Webb 2016). However, since determining if a

variable is I(0), I(1), or some other I(d) can be quite difficult in short series, it

is worth examining the performance when the user erroneously concludes that the

data are I(1)—and proceeds to run an ARDL-bounds model—when in fact they are

fractionally integrated and either spuriously related or fractionally cointegrating.

In this section, I examine how the bounds test performs when two independently

generated fractionally integrated series are regressed on one another. I next examine

how often we can detect a relationship between a weakly exogenous xt that is in a

fractionally cointegrating relationship with yt . I largely draw from the setup and R

code used by Helgason (2016, p. 60-62), who specifies the following data-generating

process:13

xt = (1−L)−dε2t (4)

12I thank an anonymous reviewer for suggesting to examine the performance of the bounds test
in regards to fractional integration.

13While fractionally integrated series are easily generated in R using the package ARFIMA (Fraley
et al. 2006), I estimated the ARDL model on the saved R series using Stata, since it was the program
used for all other simulations in this paper.
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yt −βxt = (1−L)−(d−b)ε1t (5)

In the setup above, let xt be a weakly exogenous series, since the two error terms,

ε1t and ε2t , are independently generated from one another. Let L denote the lag op-

erator, which provides for a fractionally integrated xt of order I(d), and a fractionally

integrated yt of order I(d−b), where d > b > 0. I then generated the following series

for T = 35,50,80, the same number of observations as examined in the Monte Carlos

in the main paper:14

• No fractional integration, finite variance: In this scenario, there is no

fractional integration since d = 0.4, b = 0, and β = 0. Each of the series is

I(0.4)—and, as discussed by Helgason (2016, p. 61)—the series have finite

variance and are mean reverting, since d < 0.5.

• No fractional integration, infinite variance: There is no fractional inte-

gration in this scenario since d = 0.8, b = 0, and β = 0. Each of the series is

I(0.8), and so has infinite variance since d > 0.5.15

• Fractional integration, finite variance: In this scenario, the two series are

fractionally integrated since d,b = 0.4 and β = 0.5. The linear combination of

xt and yt is stationary.

• Fractional integration, infinite variance: In this scenario, the two series
14To mitigate issues involving initial conditions (Balke and Fomby 1997), I first created a burn-in

period of T = 100 for all scenarios.
15As noted by Keele, Linn and Webb (2016), values of d > 0.5 are integer-differenced before

simulating in the R package ARFIMA, so d =−0.2 in the data-generating process.
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are fractionally integrated since d = 0.8, b = 0.6, and β = 0.5. However, the

variance of the series is infinite. The linear combination of xt and yt will be

integrated of order (d −b) = I(0.2), which is still mean-reverting and evidence

of cointegration, even if the residuals are not I(0) (Cheung and Lai 1993).16

I conducted 1000 simulations for each of the four data-generation processes de-

scribed above for T = 35,50,80. I then ran the following ARDL model:

∆yt = α∗
0+θ0yt−1+θ1xt−1+

p

∑
i=1

αi∆yt−i +
q

∑
j=0

β j∆xt− j + εt (6)

and used the bounds F-test with the appropriate critical values given by Philips

(2016b) as a test for cointegration.17 As with the other Monte Carlo experiments,

SBIC was used to determine the number of lagged first-differences of xt and yt to

include. For comparison, I also ran the Engle-Granger two step procedure in order to

test if the residuals of the first-stage were I(0), which would indicate cointegration.18

3.4.1 No Fractional Integration, Finite vs. Infinite Variance

The results from the spuriously-related series are shown in Figure 6. The bar-graph

on the left shows the case of two unrelated series that are both integrated of order

I(0.4). The vertical axis shows the length of the series, while the horizontal axis

shows the proportion of simulations that find evidence of cointegration. Since the
16As Cheung and Lai (1993) discuss, the cointegrating residuals must be I(d), where 0≤ d < 0.5.
17A restriction of p,q ≤ 3 was placed on the maximum number of lag lengths T = 35, and 4 for

T = 50, 80.
18The number of augmenting lags to include was determined by SBIC. A restriction of p,q ≤ 3

was placed on the maximum number of lag lengths T = 35, and 4 for T = 50, 80.
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two series were created to be independent from one another, this is a form of Type I

error. It is clear that both the Engle-Granger and bounds procedures find evidence

of cointegration when it does not exist at extremely high rates when both the depen-

dent and independent variable are fractionally integrated and have finite variance.

Although this rate decreases by about half for the bounds test when there are 35

observations, it still remains very high.

In contrast, when two unrelated fractionally integrated series have infinite vari-

ance (when I(0.8) > 0.5), the Engle-Granger and bounds procedures perform much

better, as shown by the bar-graph on the right in Figure 6. The bounds test cor-

rectly fails to reject the null of no cointegration between 90 and 95 percent of the

time when there are only 35 observations, and just below 80 percent of the time when

there are 80 observations. The Engle-Granger procedure has a rate of Type I error

over twice as much as the bounds test. Interestingly, both the Engle-Granger and

bounds procedures tend to have slightly higher rates of Type I error as the length of

the fractionally integrated series increases.

3.4.2 No Fractional Integration, Finite vs. Infinite Variance

In Figure 7, I examine how well the Engle-Granger and bounds procedures are able

to detect a fractionally cointegrating relationship when it does exist; in other words,

the ability of these tests to avoid Type II error when the data-generating process is

fractionally cointegrating. Since the two series are fractionally cointegrating, higher

proportions indicate the the procedure is better at detecting cointegration.
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d = 0.4, b = 0, β = 0

Engle-Granger Bounds
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d = 0.8, b = 0, β = 0

Engle-Granger Bounds

Proportion Finding Evidence of Cointegration When it Does Not Exist

Figure 6: Performance of the Engle-Granger and Bounds Test in the Face of Type I
Error

Note: Each bar-graph shows the proportion of simulations finding (at p < 0.05) evidence of one
cointegrating relationship with one regressor. The bar-graph on the left uses a DGP with finite
variance, the right does not. The Engle-Granger procedure is an augmented Dickey-Fuller unit-root
test with the hypothesis H0 = zt ∼ I(1) from yt = κ̂0+ κ̂1x1t + zt , with augmenting lags determined
by SBIC. Critical values for Bounds test determined by k regressors and number of in-sample
observations, with assumption of no trend and unrestricted constant, and lag lengths determined
via SBIC.
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d = 0.4, b = 0.4, β = 0.5

Engle-Granger Bounds
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Proportion Finding Evidence of Cointegration When it Exists

Figure 7: Ability of the Engle-Granger and Bounds Procedures to Find Fractionally
Cointegrating Relationships

Note: Each bar-graph shows the proportion of simulations finding (at p < 0.05) evidence of one
cointegrating relationship with one regressor. The bar-graph on the left uses a DGP with finite
variance, the right does not. The Engle-Granger procedure is an augmented Dickey-Fuller unit-
root test with the hypothesis H0 = zt ∼ I(1) from yt = κ̂0 + κ̂1x1t + ·+ κ̂kxkt + zt , with augmenting
lags determined by SBIC. Critical values for Bounds test determined by k regressors and number
of in-sample observations, with assumption of no trend and unrestricted constant, and lag lengths
determined via SBIC.
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As shown by the bar-graph on the left of Figure 7, it is clear that when the series

have finite variance, both the Engle-Granger and bounds procedures are very good

at detecting fractionally cointegrated series that result in an I(0) residual; detection

rates approach 100 percent for all cases, except the bounds test for 35 observations.

The bar-graph on the right in Figure 7 shows the results of the cointegration

tests from a DGP containing series with infinite variance, which results in an I(0.2)

cointegrating residual. The results are very similar to when the cointegrating residual

is I(0) (the bar-graph on the left in Figure 7), albeit slightly lower. Thus, under the

bivariate DGPs considered in this Monte Carlo experiment, it looks like both the

bounds and Engle-Granger procedures are nearly always able to pick up fractionally

cointegrating relationships when they exist.

3.4.3 Suggestions for Practitioners

There are a number of suggestions for practitioners based on the results in this

section:

• The bounds test is only designed for an I(1) dependent variable. It is crucial

that this is tested. Users that find that their dependent variable is I(0) should

consult the schematic in the main paper on the appropriate lagged-dependent

variable model to employ. If practitioners find evidence that their dependent

variable is fractionally integrated, or have strong theoretical reasons for believ-

ing it is, they should estimate a model using fractional integration techniques,

which typically involve fractionally differencing all series by their I(d) esti-
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mate and then estimating an error-correction model (known as a fractional

error-correction model) (e.g. Grant and Lebo 2016; Clarke and Lebo 2003).

Of course, they should be aware that these techniques may be questionable

in small series, since overfitting is possible using ARFIMA models (Helgason

2016; Esarey 2016; Keele, Linn and Webb 2016).19

• Procedures used to detect cointegration tend to find fractional integration,

even when it does not exist. Although I only considered four different data-

generation processes, it is clear that both the bounds and Engle-Granger pro-

cedures are able to detect fractionally cointegrating relationships at rates ap-

proaching 100 percent. However, they also tend to commit Type I error at

extremely high rates if the series have finite variance d < 0.5; this rate is much

smaller, though still substantial (especially for the Engle-Granger procedure)

when the series have infinite variance d > 0.5.

3.5 How Well Can the ARDL Procedure Recover Cointe-

grating Effects?

In the main paper, as well as in the sections above, I investigated Type I and Type

II error in terms of cointegration; were we able to avoid spurious conclusions of

cointegration, and were we able to detect cointegration when it exists? While this

investigated a crucial component in time series that fits in with recent discussions on
19For instance, Esarey (2016) suggests that series with less than 100 time points may be difficult

to estimate using fractional integration techniques, while Helgason (2016, p. 60) suggests anything
less than 250.
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spurious regressions in time series (c.f. Grant and Lebo 2016; Keele, Linn and Webb

2016), so too is the ability of our models to correctly recover the effect sizes we seek

to test. That is to say, are we able to come to the correct conclusion our hypotheses

seek to test? Such an approach has been done in the context of the GECM (Enns

et al. 2016), but not with the ARDL-bounds model.20

To investigate how well various effect sizes are recovered in the context of true

integration using the ARDL-bounds model, and how this compares to the standard

GECM, I used a setup similar to the second Monte Carlo experiment in the main pa-

per. The following data-generating process was used to create a relationship between

a dependent variable, yt , and two regressors, x1t and x2t :21

x1t = x1t−1+ν1t (7)

x2t = x2t−1+ν2t (8)

ut = 0.75ut−1+ηt +ρηt−1 (9)

yt = 0.25x1t +0.25x2t +ut (10)

Note that the errors ν1t , ν2t and ηt are independently generated from one another,

thus ensuring weak exogeneity. This DGP yields an adjustment parameter of -0.25,

a contemporaneous effect of 0.25, a long run-multiplier of 0.25, and a coefficient on

the lagged xkt variable of 0.0625. For a proof of the calculations of these various

effects, see Section 3 in the Supplemental Materials. Note also that there will be
20I thank an anonymous reviewer for suggesting this section.
21To mitigate issues involving initial conditions (Balke and Fomby 1997), I first created a burn-in

period of T = 100.
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autocorrelation in the residuals if ρ ̸=0. I explore this possibility since, in short series,

models are likely to have some amount of noise or suffer from model misspecification.

I examined all of the possible combinations below to see how well we can obtain

different effects from a cointegrating data-generating process:

1. Varying the number of observations: T = 35,50,80.

2. Varying the level of autocorrelation: ρ = 0.0,0.2,0.5.

The following models were run for the ARDL-bounds and the ECM models, respec-

tively:

∆yt = α0+θ0yt−1+θ1x1t−1+θ2x2t−1+
p

∑
i=1

αi∆yt−i +
q1

∑
j1=0

β j1∆x1t− j1 +
q2

∑
j2=0

β j2∆x2t− j2 + εt

(11)

∆yt = α0+θ0yt−1+θ1x1t−1+θ2x2t−1+∆β1x1t +∆β2x2t + εt

(12)

Augmenting lags of the first-difference of x1t , x2t and yt were determined by SBIC

for the ARDL-bounds model.22 To compare the performance of the ARDL-bounds

approach and the standard ECM, I use two different approaches:

• Coverage Rates: What percentage of the time do constructed 95 percent

confidence intervals for each of the simulations fail to encompass the true effect

size?
22A maximum lag restriction of p,q1,q2 ≤ 4 was used for T =50,80 and a restriction of p,q1,q2 ≤ 3

for T = 35.
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• Empirical Distribution: Taking all simulation parameter estimates together

and constructing a single mean and 95 percent confidence interval, what is the

likely value (and sampling variability) of the estimate?

Both are important, since they since they help show how well the models get our

substantive hypotheses correct. The former is what we would get if we ran a single

model and calculated the 95 confidence intervals (or the percent of simulations whose

effect size is statistically significantly different from zero at the five percent level).

The latter is what we mean (in terms of interpretation) when we construct confidence

intervals.

A stylized example of this approach is shown in Figure 8. Each density plot

represents estimated coefficients using a different model. The “true” parameter value,

shown by the vertical black line, was specified in the hypothetical data generating

process. If we were to construct 95 percent confidence intervals for each simulation

conducted for each of the three models, and then test the null hypothesis that the

parameter was at “True”, we would create a coverage rate, or the likelihood that a

parameter estimate from a single model fails to model the underlying data-generating

process. In Figure 8, we would find that the coverage rate of Model 1 was zero (its

constructed 95 percent confidence intervals never contained the true value of the

parameter; equivalently, we would be able to reject the null hypothesis), the coverage

rate of Model 2 would be very high (the constructed 95 percent confidence intervals

nearly always contained the true parameter estimate), and the coverage rate of Model

3 would be very low. In terms of our substantive hypotheses, we would never gain

correct inferences if we were using Model 1, we would almost always be correct using
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Model 2, and would be almost never correct using Model 3.

0 True
Parameter Value

Model 1 Model 2 Model 3

Figure 8: Stylized Example of How Effect Coverage and Empirical Distribution In-
form About Inference

For the empirical distribution, we simple calculate the mean and upper- and

lower- percentile confidence intervals of the estimated parameters. We can then ex-

amine a number of factors, such as how far away the estimated mean is from the

mean of the data-generating process, the variability of the distribution of parame-

ters, and if the constructed confidence interval encompasses the true parameter. In

Figure 8, this would involve taking the mean and calculating percentiles of each of

the three distributions of parameter estimates. We would find that Model 2 had

a mean estimate closest to the true parameter, that Model 3 had the largest sam-

pling variability, and that Model 1 had a constructed confidence interval that never

approached the parameter value of the data-generating process.
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The coverage probabilities for the short-run effect from the Monte Carlo experi-

ment are shown in Figure 9. The horizontal axis shows the proportion of simulations

whose constructed 95 percent confidence intervals did not contain the parameter

value of the data-generating process (0.25 in this case); thus, lower values indicate

the method is more likely to recover the true effect size. At conventional standards,

we would expect to reject the null hypothesis of the true effects about five percent

of the time. This is shown in the figures by the red vertical line at 0.05.
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Figure 9: Coverage of the Short-Run Effect

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

There are a number of interesting findings in Figure 9. Only a small proportion

of simulations had constructed 95 percent confidence intervals that did not overlap
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with the short-run effect used in the data-generating process, as evidenced by the

clustering around 0.05. The GECM slightly outperforms the ARDL-bounds model,

though this difference appears to shrink as the sample size increases. In addition,

while we saw above that increased autocorrelation increased absolute bias (especially

in the GECM), it actually tends to increase the coverage probability for the GECM,

and less so for the ARDL-bounds model. In sum, both the ARDL-bounds and GECM

are very good at recovering the true estimate of the contemporaneous effect of xt on

yt , even in short series, and even when serial correlation of the errors is present.

I next examine the coverage probability of the long-run effect in Figure 10. The

largest difference between these results and the coverage of the short-run effect is the

large increase in the proportion of simulations that could not recover the long-run

effect. Also interesting is that increases in autocorrelation tend to lead to better

recovery of the effect size. In addition, the GECM seems to outperform the ARDL-

bounds model across the size of the sample and level of residual autocorrelation; this

difference is greatest when autocorrelation is high. Overall, it appears that both

models have a difficult time accurately recovering the true effect size of the long-run

effect.

In Figure 11, I plot the proportion of simulations where the constructed 95 percent

confidence intervals did not encompass the coefficient of the lagged independent

variable. The results are more similar to the short-run effect than to the long-run

effect shown in Figure 10; both models tend to be unable to find the true coefficient of

the lagged xt variable between 7 and 18 percent of the time, depending on the number

of observations (as the series lengthens, the models recover the true parameter more
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Figure 10: Coverage of the Long-Run Effect

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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frequently) and the level of residual autocorrelation (more autocorrelation makes

recovery less frequent). Overall, the GECM seems to perform slightly better than

the ARDL-bounds model.
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Figure 11: Coverage of the Lagged Independent Variable

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

Last, I plot the coverage probability of the adjustment parameter in Figure 12.

A number of interesting results stand out. First, increasing sample size does not

improve coverage by much, in contrast to the findings about absolute bias above.

Second, the GECM tends to have higher rates of coverage, unless residual autocor-

relation is high. Note that when there are 80 observations and ρ = 0.5, using the

ARDL-bounds model over the GECM results in an improvement in coverage of about
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30 percent. Last, it appears that as sample size increases, the difference in coverage

between the two methods shrinks, as long as autocorrelation is low (i.e., ρ = 0.0,0.2).
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Figure 12: Coverage of the Adjustment Parameter

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

There are a number of conclusions to draw from this simulation experiment.

First, both the ARDL-bounds and GECM tend to be very good at recovering the

short-run effect, the coefficient on the lagged independent variable, and adjustment

parameter. Both models tend to be unable to recover the long-run effect, possibly

because this involves a combination of two estimates: the coefficient on the lagged

xt , and the coefficient on the lagged dependent variable. Second, although bias

increases and coverage is worse for the smallest sample size, T = 35, it is less drastic
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than one might expect. In fact in some cases (such as when autocorrelation is high),

shorter series may result in better estimates. Third, the ARDL-bounds method offers

lower bias than the GECM when residual autocorrelation is present, and possibly

an improvement in coverage, though it was less clear for the latter.23 Fourth, these

findings hold for a model of two weakly exogenous regressors. The findings may be

quite different for multiple regressors, as many of the Monte Carlo simulations in

the main paper found. Last, this Monte Carlo experiment used an lagged dependent

variable parameter with a slow rate of adjustment (−0.25); if coverage rates and bias

are affected in a similar way to the Type II error performance of the cointegration

tests (see the contour plot results in Figure 1), bias may decrease and coverage rates

may be much higher with a faster rate of adjustment. Therefore, this represents

what is likely to be a difficult test for both models.

The empirical distribution of the short run effect from the Monte Carlo experi-

ment is shown in Figure 13. The vertical axis shows the length of the series as well

as the level of residual autocorrelation, while the horizontal axis shows the size of

the distribution of the estimated coefficients. Combining all simulations together,

there appears to be very little difference between the average parameter estimate and

the actual short-run effect from the data-generating process (shown by the vertical

line at 0.25). As expected, the constructed 95 percent confidence intervals tend to

shrink (more simulations have an estimate that is closer to the mean) as the length

of the series increases. Residual autocorrelation appears to increase the variability

of parameter estimates somewhat, and the variability of estimates is slightly wider
23The GECM had better coverage than the ARDL-bounds for the short-run and long-run effects

in the face of autocorrelation, but not for the adjustment parameter.
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for the ARDL-bounds than for the GECM. Overall, both models appear to be very

good at estimating the actual short-run effect of a cointegrating relationship, with

only slight variability in the estimates from sample to sample.

The empirical distribution of the long-run effect is shown in Figure 14. In con-

trast to the short-run effect, there is a large spread in parameter estimates when

autocorrelation is high, and much less when it is low. Note too that although the

actual value of the long-run effect is 0.25, the upper- and lower- confidence intervals

are much higher or lower in many cases; only when autocorrelation is low—and the

length of the series is T = 50 or more—do most estimates fall right around 0.25.

Last, note that, especially when autocorrelation is high, the ARDL-bounds model

has a slightly lower spread of parameter estimates than the GECM.

I plot the empirical distribution of the lagged independent variable, x1t−1, in

Figure 15. In contrast to the long-run effect, the spread of parameter estimates lie

much closer to the actual parameter value, 0.0625. However, unlike the short-run

effect, there appears to be bias in the estimates when there is no autocorrelation;

that is to say, taken together, we can expect both models to slightly over-estimate

the size of the lagged independent variable (on average). Surprisingly, much of this

bias goes away at low levels of autocorrelation (i.e., when ρ = 0.2), and models tend

to under-estimate the size of the lagged independent variable when autocorrelation

is high. Last, unless the length of the series is about 80, using the ARDL-bounds

model leads to a slightly greater spread of parameter estimates.

Last, I plot the empirical distribution of the adjustment parameter in Figure
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Figure 13: Empirical Distribution of the Short-Run Effect

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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Figure 14: Empirical Distribution of the Long-Run Effect

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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Figure 15: Empirical Distribution of the Lagged Independent Variable

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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16. There are many important findings about the ability of the ARDL-bounds and

GECM to recover the correct coefficient on the lagged dependent variable. First,

estimates tend to be more negative at low levels of autocorrelation, and less negative

as autocorrelation increases. Surprisingly, these shifts are present across all numbers

of observations. This suggests that without autocorrelation, estimates are likely

to conclude that the adjustment parameter has a faster rate of adjustment (i.e.,

approaches -1) than it actually does, while with autocorrelation, estimates are likely

to conclude a slower rate of adjustment (closer towards zero) than is actually the

case. In fact, when autocorrelation is high and when T = 80, using the GECM leads

to a situation where 95 percent of the parameter estimates are less negative than

the actual adjustment parameter. Overall however, the GECM has relatively less

variability in parameter estimates, especially when T = 35.

Another interesting characteristic of the estimates in Figure 16 is the skewness

of the parameter estimates.24 Nearly every set of simulation results, especially those

when the length of the series is T = 35, have a left-skew, suggesting that while many

estimates are clustered tightly near the actual value of the adjustment parameter,

those to the left of the distribution are much more spread out. This may be a factor of

the data-generating process; were we to create a cointegrating relationship where the

value of the adjustment parameter was -0.75, we might expect a right-skew instead.
24Skewness appears to exist since the mean values are not centered on the 95 percent confidence

intervals.
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Figure 16: Empirical Distribution of the Adjustment Parameter

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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3.6 Can the ARDL-Bounds Procedure Avoid Spurious Coin-

tegrating Effects?

The section above investigated how well we are able to recover the parameter esti-

mates and effects of interest for a cointegrating data-generating process. How well

do the ARDL-bounds and GECM avoid spurious conclusions about parameters and

effects of interest when all series are I(1) but unrelated to one another? As discussed

in the main paper, the ARDL-bounds model and the GECM are inappropriate to

use if all series are I(1) and not cointegrating. Yet deciding whether a series is I(0)

or I(1) is extremely difficult in short series. Therefore, it is worth examining how

well the ARDL-bounds model avoids making incorrect inferences about the effect of

an unrelated series on another, and how this compares to the GECM.

The following data-generating process was used:25

x1t = x1t−1+ν1t (13)

x2t = x2t−1+ν2t (14)

ut = 0.75ut−1+ηt +ρηt−1 (15)

yt = ut (16)

Note that the errors ν1t , ν2t and ηt are independently generated from one another,

and yt is unrelated to the two I(1) regressors, x1t and x2t . Because of this, the con-

temporaneous effect of the regressors is zero, the coefficient on the lagged regressors
25To mitigate issues involving initial conditions (Balke and Fomby 1997), I first created a burn-in

period of T = 100.
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is zero, and the long-run multiplier is zero. Since yt still depends on past values, the

adjustment parameter is -0.25. As with the previous section, there is autocorrelation

in the residuals if ρ ̸= 0. 1000 simulations were conducted for each of the following

combinations:

1. Varying the number of observations: T = 35,50,80.

2. Varying the level of autocorrelation: ρ = 0.0,0.2,0.5.

Then the following models were run for the ARDL and the ECM models, respectively:

∆yt = α0+θ0yt−1+θ1x1t−1+θ2x2t−1+
p

∑
i=1

αi∆yt−i +
q1

∑
j1=0

β j1∆x1t− j1 +
q2

∑
j2=0

β j2∆x2t− j2 + εt

(17)

∆yt = α0+θ0yt−1+θ1x1t−1+θ2x2t−1+∆β1x1t +∆β2x2t + εt

(18)

Since both xkt series were constructed to have no relationship to yt , we should only

reject the null hypothesis that the short- and long-run effects, as well as the coefficient

on the lagged x1t , are equal to zero about five percent of the time.

As shown in Figure 17, both the GECM and the ARDL-bounds methods do a

good job at estimating the true effect of ∆x1t when it is zero. The rates of rejection

of H0 = 0 tend to fall slightly as the length of the series increase. In addition, the

GECM more frequently estimates short-run parameters whose constructed 95 percent

confidence intervals overlap zero. Finally, residual autocorrelation has only a small

effect on coverage rates of the short-run effect; it is not clear whether higher levels
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of autocorrelation decrease or increase coverage.
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Figure 17: Coverage of the Short-run Effect

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

Coverage rates of the long-run effect are shown in Figure 18. Compared to the

short-run effect, there are substantially more simulations that incorrectly reject the

null hypothesis that the long-run effect is equal to zero. Counterintuitively, the

proportion of simulations whose 95 percent confidence intervals do not cover zero

tends to increase as the length of the series increase. Moreover, greater levels of

autocorrelation tend to make it less likely that either the ARDL-bounds or GECM

find spurious evidence of a long-run effect. Overall, these findings suggest that when

using all-I(1) series, we are highly susceptible to finding evidence of a long-run effect
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when it does not exist. Thus, testing for cointegration is crucial.
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Figure 18: Coverage of the Long-run Effect

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

In Figure 19, I show the proportion of simulations whose constructed 95 percent

confidence intervals of the lagged independent variable do not overlap with zero.

Relative to the long-run multiplier, coverage is much better; when the series is small,

one finds evidence of a statistically significant (i.e., not equal to zero) coefficient on

the lag of xt about 15 percent of the time. As the series increases to about T = 80,

this rate drops to less than 10 percent, unless autocorrelation is high.

Last, I examine the coverage rates of the adjustment parameter in Figure 20.

Recall that although the two I(1) regressors in the data-generating process were
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Figure 19: Coverage of the xt−1 Parameter

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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constructed so that they are unrelated to yt , in the resulting GECM and ARDL-

bounds models we would still expect an adjustment parameter of −0.25, since current

values of yt are related to its past values. The proportion of simulations whose

constructed 95 percent confidence intervals did not include −0.25 are shown in Figure

20.
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Figure 20: Coverage of the Adjustment Parameter

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

A number of important points stand out. First, when autocorrelation is low, both

the GECM and ARDL-bounds models tend to more often model the true adjustment

parameter as the number of observations increase. In contrast, when autocorrelation

is high, our estimates of the adjustment parameters are less likely to include the

63



actual estimate at the length of the series increases. In fact, when T = 80 and

autocorrelation is ρ = 0.5, the ARDL-bounds model results in an estimate whose

confidence interval does not include the true value of the adjustment parameter

about 35 percent of the time. For the GECM, this is over 50 percent. Last, when

there were moderate levels of autocorrelation (ρ = 0.2), both models, especially the

GECM, were most likely to recover the true value of the adjustment parameter.

The empirical distribution of the short-run effect is shown in Figure 21. Recall

from the previous section that the empirical distribution describes the spread of the

estimated effects using the mean of the 1000 simulations. In addition, the constructed

95 percent confidence intervals (where do 95 percent of the estimates fall?) help show

the spread of the estimates. As is clear from Figure 21, the estimated short-run

effects are clustered around the true effect size of zero. There are slight increases

in variability of the estimates as residual autocorrelation increases, and the ARDL-

bounds model leads to a slightly larger spread of empirical estimates when T = 35.

In Figure 22, I plot the empirical distribution of the long-run effect. Since this

effect is calculated from two estimates (the lagged dependent variable and the co-

efficient on the lagged independent variable), it is not surprising that the spread of

parameter estimates is much greater than for the short-run effect. Overall, the aver-

age effect estimate is centered on its true value of zero, except when autocorrelation is

high (ρ = 0.5) and the series is extremely short (T = 35). The variability in estimates

tends to be much smaller when autocorrelation is low. Moreover, the ARDL-bounds

model tends to have smaller variability than the GECM when autocorrelation is high.
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Figure 21: Empirical Distribution of the Short-Run Effect

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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Figure 22: Empirical Distribution of the Long-Run Effect

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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The empirical distribution of the estimated coefficient of the lagged independent

variable is shown in Figure 23. Nearly all estimated parameters have a mean of about

zero. While the variability of estimates remains small when residual autocorrelation

is low, there is a marked increase when it increases. For example, when autocorrela-

tion is high (ρ = 0.5) and the number of observations small (T = 35), 95 percent of

the 1000 estimates fell between -4 and 4 for the GECM, and between -3 and 3 for

the ARDL-bounds model; when ρ = 0.0, this spread falls to around -0.8 and 8, and

-1 and 1, respectively.

I last examine the empirical distribution of the adjustment parameter in Figure

24. In this experiment, even though the short-run effect, long-run effect, and coeffi-

cient on the lagged independent variable should be zero, the adjustment parameter

still has a value of −0.25. As shown by Figure 24, both models tend to estimate

parameters that are more negative than −0.25 at low levels of autocorrelation, and

actually get closest to the true adjustment parameter only when autocorrelation is

ρ = 0.5. Overall, estimates tend to cluster around the true value of the adjustment

parameter as the length of the series increase, although there is a tendency for the

estimates to attenuate towards zero when autocorrelation is high.

To summarize this section, I find that on average, both the GECM and ARDL-

bounds model obtain the correct estimate of null effects using an all I(1), spuriously

related data-generating process. However, a moderate proportion of estimates tend

to indicate a significant effect when there is none, especially for the long-run effect.

This underscores the need to test for cointegration before estimating error-correction

models with non-stationary data.
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Figure 23: Empirical Distribution of the Lagged Independent Variable

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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Figure 24: Empirical Distribution of the Adjustment Parameter

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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3.7 How Well Can the ARDL Procedure Recover Stationary

Relationships?

In the sections above I investigated the performance of the ARDL model at recovering

effect sizes and parameter estimates under two scenarios: when the series were all I(1)

and cointegrating, and when the series were all I(1) and unrelated to one another.

In this section I examine how well the ARDL-bounds model can recover effects of

interest from a stationary, autoregressive relationship. As noted by many scholars

(De Boef and Keele 2008; Keele and Kelly 2006), the general error-correction model

can be used in the all-I(0) case—although the standard lagged-dependent variable

model is a simpler alternative (Enns et al. 2016).26 Therefore, in this section I

examine the performance of the ARDL-bounds model as well as the GECM.

Since the ARDL modeling procedure in the main paper simply involves estimating

a standard error-correction model (the first-difference of the dependent variable is

regressed on its lag and the lag and first difference of the independent variables)

with additional lagged first differences to remove residual autocorrelation, a priori, I

expect the recovery rate of relationships to be very similar to the standard GECM.

However, since models often contain some amount of mis-specification, particularly in

short samples, I investigate the consequences of varying amounts of autocorrelation
26Moreover, the GECM requires at least two parameters for each regressor (i.e., ∆xt and xt−1

in order to recover short- and long-run effects, while the lagged-dependent variable model requires
only one (typically xt).
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in the residuals. I used the following data-generating process:27

x1t = 0.5x1t−1+ν1t (19)

x2t = 0.5x2t−1+ν2t (20)

yt = 0.5yt−1+2x1t +2x2t + εt +ρεt−1 (21)

where the errors ν1t , ν2t , and εt are independently generated from one another. Note

also that there exists autocorrelation in the error term for the data-generating process

of yt , as long at ρ ̸= 0. I then ran the following models for the ARDL-bounds and

the GECM, respectively:

∆yt = α0+θ0yt−1+θ1x1t−1+θ2x2t−1+
p

∑
i=1

αi∆yt−i +
q1

∑
j1=0

β j1∆x1t− j1 +
q2

∑
j2=0

β j2∆x2t− j2 + εt

(22)

∆yt = α0+θ0yt−1+θ1x1t−1+θ2x2t−1+∆β1x1t +∆β2x2t + εt

(23)

Augmenting lags of the first-difference of x1t , x2t , and yt were determined by SBIC

for the bounds-ARDL model.28 I then tested how well both the ARDL-bounds

model and the GECM recovered the short-run effect of β1 = 2 for x1t , the long-run

effect, 2
(1−0.5) = 4, the coefficient on the lagged regressor, θ1 = 2, and the adjustment

parameter, which should have a coefficient of θ0 = (0.5−1) =−0.5 in the GECM and
27To mitigate issues involving initial conditions (Balke and Fomby 1997), I first created a burn-in

period of T = 100.
28A maximum lag restriction of p,q1,q2 ≤ 4 was used for T = 50,80 and a restriction of p,q ≤ 3

for T = 35.
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ARDL-bounds models.29 Since x1t and x2t had identical data-generating processes,

I only examine x1t below. I generated 1000 simulations across each of the following

combinations:

• Varying the number of observations: T = 35,50,80.

• Varying the level of autocorrelation: ρ = 0.0,0.2,0.5.

As with the cointegrating Monte Carlo experiment, I calculated coverage proba-

bilities for the stationary relationships simulated in this section. This series of figures

helps to answer whether or not we get our substantive hypotheses correct (see Figure

8 for a graphical depiction of this); if a high proportion of simulations find that—after

constructing 95 percent confidence intervals, that the true parameter lies within the

estimated interval—then we can be relatively confident that these models are able to

recover the actual parameter estimates of the underlying process we seek to model.

If instead, we find that the constructed intervals are wildly off the mark, it is less

likely that we will get our substantive hypotheses correct.30

The results for the short-run effects are shown in Figure 25. The horizontal

axis shows the proportion of simulations whose constructed 95 percent confidence

intervals did not contain the parameter value of the data-generating process (2.0

in this case); thus, lower values indicate the method is more likely to recover the

true effect size. As shown in Figure 25, only a small proportion of simulations have
29On the equivalence and interpretation of the ADL and GECM, see De Boef and Keele (2008).
30By hypotheses, I mean both direction (is the effect positive or negative) and magnitude (the size

of the effect). This section does not address cases where we only get one of these two components
correct.
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constructed coverage probabilities that do not cover the parameter from the data-

generating process. The GECM appears to be slightly better at recovering the short-

run effect sizes, but this difference becomes negligible as the sample size increases.

As expected, an increase in autocorrelation tends to lead to poorer coverage.
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Figure 25: Coverage of the Short-Run Effect

Note: Dot plot shows the proportion of the time that the DGP parameter fell outside of the calcu-
lated 95 percent confidence confidence interval for a simulation, across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

I examine the coverage probabilities of the long-run effect in Figure 26. Neither

the ARDL-bounds or GECM have constructed coverage probabilities that tend to

include the long-run effect at conventional rates. Interestingly, coverage tends to be

better in both models as autocorrelation increases. Surprisingly, coverage does not

seem to improve, and in fact gets worse, as the number of observations increase. Last,
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the ARDL-bounds model appears to outperform the GECM in terms of coverage;

this indicates that users are more likely to recover the actual effect of interest when

using the ARDL-bounds.
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Figure 26: Coverage of the Long-Run Effect

Note: Dot plot shows the proportion of the time that the DGP parameter fell outside of the calcu-
lated 95 percent confidence confidence interval for a simulation, across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

In Figure 28, I examine the coverage of the adjustment parameter. Recall that

since we created a stationary data-generating process where the value of the lagged

dependent variable was 0.5, this DGP would yield an adjustment parameter of -0.50

in the GECM and bounds model. It appears as though the largest determinant of

coverage for the adjustment parameter is the amount of residual autocorrelation.

Although coverage improves as sample size increases when there is little to no auto-
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Figure 27: Coverage of the xt−1 Parameter

Note: Dot plot shows the proportion of the time that the DGP parameter fell outside of the calcu-
lated 95 percent confidence confidence interval for a simulation, across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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correlation (i.e. ρ = 0.0,0.2), when autocorrelation is equal to ρ = 0.5, the calculated

coverage probability of the adjustment parameter is less likely to contain the DGP

parameter as sample size increases. This holds for both the bounds and GECM

models. Therefore, it appears as though residual autocorrelation can be problematic

for obtaining the correct adjustment parameter, especially as the number of obser-

vations increases. In addition, as the number of observations increase, the bounds

test appears to perform slightly better than the GECM if autocorrelation is high.
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Figure 28: Coverage of the Adjustment Parameter

Note: Dot plot shows the proportion of the time that the DGP parameter fell outside of the calcu-
lated 95 percent confidence confidence interval for a simulation, across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

In addition to examining coverage probabilities of the stationary DGP, I also

examine the empirical distribution of each of the parameters or effects. This is

76



shown for the short-run effect in Figure 29. As with all other empirical distributions

of the short-run effect, this one shows that all parameter estimates are relatively

tightly clustered around the actual short-run effect size of 2.0. There is very little

difference in estimated parameter variability between the two models.
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Figure 29: Empirical Distribution of the Short-run Effect

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

In Figure 30 I plot the empirical distribution of the long-run effect. Overall, the

GECM has a tighter spread of parameter estimates. Mean estimates always tend

to be the same across both models, except when autocorrelation is high; in these
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instances, the ARDL-Bounds model tends to lead to estimates that are attenuated

towards zero. Last, as seen for the other effects, the empirical distribution tends to

concentrate towards the true value of four as the length of the series increase.
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Figure 30: Empirical Distribution of the Long-run Effect

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

The empirical distribution of the estimated parameter on the lagged independent

variable is shown in Figure 31. As with the long-run effect, differences between the

two models—in terms of average parameter estimates—tend to appear only when

autocorrelation is high. Unlike the long-run effect, average parameter estimates
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tend to attenuate towards zero as the length of the series increase, but only when

autocorrelation is high.31 Overall, the GECM tends to have parameter estimates

more concentrated around the actual value of the lagged independent parameter.

0.0

0.2

0.5

0.0

0.2

0.5

0.0

0.2

0.5

Obs = 35

Obs = 50

Obs = 80

-1.5 -1 -.5 0 .5 1 1.5 2 2.5 3 3.5 4
Estimated Coefficient

Bounds GECM

Figure 31: Empirical Distribution of the Lagged Independent Variable Parameter

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

31As shown in Figure 31, this may be because the estimated coefficient on the adjustment pa-
rameter tends to attenuate towards zero (from the negative side) when autocorrelation is high.
Interestingly, since both parameter estimates are used to calculate the long-run effect in Figure 30
(which did not have increased bias as the length of the series increased under high autocorrelation,
and since both estimates are moving towards zero, the two essentially cancel each other out, leading
to very little bias shown in Figure 30. )
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Last, I examine the empirical distribution of the adjustment parameter in Figure

32. As with the lagged independent variable estimates, estimates of the adjustment

parameter tend to attenuate towards zero when autocorrelation is high; this gets

worse as the length of the series increase. Overall however, at low levels of autocor-

relation, both the ARDL-bounds and GECM are quite good at providing estimates

near the true value of the adjustment parameter.
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Figure 32: Empirical Distribution of the Adjustment Parameter

Note: Plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

There are a number of important findings in regards to the use of the bounds
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and GECM models to model a stationary DGP.32 As with the cointegrating case

(see Section 2.4), I find that the bounds test tends to reduce bias to a greater extent

than the GECM, while the GECM tends to have calculated coverage probabilities

that include the parameters of the DGP more often than the ARDL-bounds model.

Coverage appears to be quite good for the short-run and long-run effects across

both models, and less so for the adjustment parameter when there is substantial

residual autocorrelation. Bias appears to be especially large only for the long-run

effect. Also interesting is that there appear to be no large changes as sample size

increases; coverage and bias is not poor in short samples, and even may lead to

better coverage probabilities in the face of high autocorrelation, as seen with the

adjustment parameter (see Figure 28).

3.8 Can the ARDL Procedure Avoid Spurious Stationary

Relationships?

In the previous section I investigated the performance of the ARDL-bounds model

and the GECM when modeling stationary series. In this section, I explore how well

each model avoids spurious conclusions when there is no relationship between the

dependent and independent variables. The data-generating process is the same as in
32As with Section 2.4, these findings may hold only for the case of a single, weakly exogenous

regressor. As I found in the main paper, the performance of models and test statistics appears
to vary substantially as the number of regressors change; tests that perform well under a single
regressor may not perform well when using three or four regressors.
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the above example, except now the two regressors are unrelated to yt :

x1t = 0.5x1t−1+ν1t (24)

x2t = 0.5x2t−1+ν2t (25)

yt = 0.5yt−1+ εt +ρεt−1 (26)

Since neither of the stationary independent variables are related to the dependent

variable, the short-run and long-run effects, as well as the coefficient on the lagged

independent variable, should be zero. Since past values of yt are related to current

ones, we should still expect to recover an adjustment parameter of −0.5.

I first examine coverage rates. The coverage rate of the short-run effect is shown

in Figure 36. Since the DGP specified that x1t is unrelated to yt , the figure shows

the proportion of simulations whose 95 percent confidence intervals did not include

zero. Across different lengths of the series, and varying levels of autocorrelation,

we find evidence of an effect that is statistically significantly different from zero

between four and seven percent of the time. Surprisingly, there appears to be no

relationship between the length of the series, or the amount of autocorrelation, and

the coverage rates. Overall, the GECM is slightly better at estimating parameters

whose confidence intervals correctly include zero.

In Figure 34 I examine the coverage rates of the long-run effect of a spuriously-

related I(0) series. Counterintuitively, we are less likely to conclude evidence of a

long-run effect (when the true DGP is a spurious relationship), in shorter series and

under high levels of residual autocorrelation; for T = 80, moving from no autocorre-
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Figure 33: Coverage of the Short-run Effect

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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lation (ρ = 0.0) to high correlation (ρ = 0.5) decreases the proportion of simulations

that reject the (true) null hypothesis that the long-run effect equals zero from about

50 percent of the time to just over 10 percent. Coverage rates between the two

models are generally similar.

0 .1 .2 .3 .4 .5
Proportion of Simulations that Reject H0 = 0

80

50

35

.5

.2

0

.5

.2

0

.5

.2

0

Bounds GECM

Figure 34: Coverage of the Long-run Effect

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

While coverage rates of the long-run effect were quite high in the case of spuriously-

related, I(0) series, the coverage rates of the parameter estimate on the lagged in-

dependent variable are much closer to conventional levels, as shown in Figure 35.

In general, lower levels of autocorrelation are associated with coverage rates closer

to conventional levels of acceptance. In addition, increasing the length of the series
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leads to much closer coverage rates between the ARDL-bounds and GECM.

0 .02 .04 .06 .08 .1
Proportion of Simulations that Reject H0 = 0

80

50

35

.5

.2

0

.5

.2

0

.5

.2

0

Bounds GECM

Figure 35: Coverage of the xt−1 Parameter

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

In Figure 36, I show the coverage rate of the adjustment parameter. Recall

that even though the independent variables are unrelated to yt , we still expect the

coefficient on the adjustment parameter to be (0.5−1) =−0.5. As is clear from the

figure, a large number of simulations result in 95 percent confidence intervals that do

not include −0.5. When autcorrelation is low, the GECM tends to perform better

than the ARDL-bounds, but only when the length of the series is large (T = 80).

In contrast, if there is high autocorrelation in sizable series (again T = 80), the

ARDL-bounds performs much better than the GECM. Overall, both models tend to
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perform better in short series, and when autocorrelation is low. In sum, this suggests

that when autocorrelation and the length of the series is large, the stationary (and

unrelated) properties of the regressors may make it hard to estimate the correct value

of the adjustment parameter.
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Figure 36: Coverage of the Adjustment Parameter

Note: Dot plot shows the proportion of simulations where the DGP parameter fell outside of
the calculated 95 percent confidence confidence interval for a simulation, across the number of
observations (T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

As with all other Monte Carlo experiments in this section, I also investigate the

empirical distribution of the estimates to get a sense of how clustered the estimates

are, and if the average estimate lies near the DGP value. The first of these is shown

in Figure 37, which is of the short-run empirical distribution of xt . As has been clear

from all simulation results so far, both the ARDL-bounds and GECM are quite good
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at estimating the short-run effect under a variety of conditions. Even under short

series and high autocorrelation, both models result in parameter estimates that are

centered on zero and 95 percent of estimates range from -.4 to .4.
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Figure 37: Empirical Distribution of the Short-Run Effect

Note: Dot plot shows the average estimated from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

Unlike previous results, the empirical distribution of the long-run effect under a

stationary, yet unrelated process, tends to center around the actual effect of zero, as

shown in Figure 38. While the variability of parameter estimates tends to increase

when autocorrelation is very high (ρ = 0.5), this only seems to be a problem in short
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series; when T = 80 and ρ = 0.5, 95 percent of parameter estimates lie between -2

and 2 for both models.
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Figure 38: Empirical Distribution of the Long-Run Effect

Note: Dot plot shows the average estimated from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).

In Figure 39 I show the empirical distribution of the lagged coefficient on xt .

Although parameter estimates are slightly larger under the ARDL-bounds in short

series, for the most part both models tend to accurately find that the true DGP is

zero, given enough repeated samples. In addition, estimates tend to improve as the

length of the series increases.
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Figure 39: Empirical Distribution of the xt−1 Parameter

Note: Dot plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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Last, I show the empirical distribution of the adjustment parameter in Figure

40. While all other empirical distributions for a spuriously-related I(0) process were

centered around zero, the adjustment parameter is much different. As is clear based

on the other simulations in this section, adjustment parameters tend to slightly

overestimate coefficients (i.e., make them more negative) when autocorrelation is

low; estimates tend to attenuate towards zero when autocorrelation is high. In the

case of high autocorrelation and long series (T = 80), 95 percent of the simulated

estimates do not fall anywhere near the actual adjustment parameter of -0.5. This

helps explain the surprising lack of coverage in Figure 36 for the GECM; since the

ARDL-bounds model tends to have slightly wider confidence intervals, the skewed

empirical distribution of the adjustment parameter means that very few of the GECM

estimates have confidence intervals that overlap with -0.5.

3.9 A More Conservative Assessment of Type I Error for the

Cointegration Tests

In the main paper, I investigated rates of Type I error across four different coin-

tegration tests in the first Monte Carlo experiment. The bounds test was treated

as having avoided a spurious conclusion of cointegration if the resulting test statis-

tic was below the upper I(1) critical value. This was justified since—by using this

cut-off point—the bounds test provides a result that can be interpreted just like the

other cointegration tests: an F-statistic above the I(1) critical value suggests that

all regressors appear to be cointegrated with the dependent variable.
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Figure 40: Empirical Distribution of the Adjustment Parameter

Note: Dot plot shows the average parameter estimate from 1000 simulations—along with 95 percent
confidence intervals calculated using the percentile method—across the number of observations
(T = 35,50,80) and level of AR(1) (ρ = 0.0,0.2,0.5).
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In this section I use the same data from the Monte Carlo simulation in the main

paper, but this time I treat an inconclusive result (i.e., if the test statistic falls

between the I(1) and I(0) critical values) as another form of Type I error. How might

an indeterminate test result be considered a form of Type I error? Consider the

following example; four unrelated regressors are included in an ARDL model, and

the user gets an indeterminate F-statistic result using the bounds test. The user

then restricts one of the series from appearing in levels (i.e., imposes the restriction

that this regressor cannot cointegrate with the dependent variable), and the resulting

F-statistic now falls above the I(1) critical value. Thus, by treating indeterminate

results as a potential form of Type I error, we can establish a very high standard for

the bounds test to pass.

The results using the new critical values are shown in Figure 41. Recall from

the main paper that this data-generating process involved creating an I(1) depen-

dent variable, yt , and four independent variables, xkt (where k = 1,2,3,4), for se-

ries of length T = 35,50,80. The autoregressive process for x1t was varied by ϕ1 =

(0.0(.20)1.0), while all of the other xkt regressors (if present in the model), were I(1).

I then used the bounds testing procedure, and compared this with the results of the

Engle-Granger and Johansen (BIC and rank) cointegration tests. In Figure 41, the

proportion of bounds test statistics falling above the I(1) critical value—or falling

between the I(1) and I(0) thresholds—are shown as a black line. For reference, the

original bounds test results (that is, only treating a test statistic above the I(1) criti-

cal value as Type I error) are shown as blue dots. Not surprisingly, the proportion of

simulations falsely detecting cointegration using the I(1) and indeterminate cut-off
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points increase. Yet this increase is not uniform across the length of the series or the

number of k regressors. For instance, when there are only one or two regressors, the

rates of Type I error for the bounds test are nearly identical to the original bounds

test results in the main paper. Yet for three, and especially under four regressors,

the rates of Type I error for the bounds test increase substantially when using the

expanded definition of Type I error. However, it appears that by increasing the

length of the series, this difference appears to shrink. Note also how if we count

critical values that are indeterminate or exceeding the I(1) value, the rate of Type I

error stays constant across the level of autoregression in the single series, x1t . This

is similar to the earlier findings in the main paper.

In addition to comparing the rates of Type I error under the different cut-off

points for the bounds test, it also helps to compare how the new results compare

to the three other cointegration tests. For series of length T = 35, the bounds test

remains the best choice for minimizing the Type I error rate; although the Engle-

Granger test performs similarly for a single regressor, the Johansen test performs at

a similar rate as the bounds test when there are four regressors in the model. When

T = 50, the bounds test remains the best choice for minimizing Type I error, except

in the case of four regressors (the Johansen BIC test outperforms the bounds test

when autocorrelation is high). When T = 80, the bounds test has the lowest rate

of Type I error across all scenarios, except when there are many regressors (3 or 4)

and when the level of autoregression in the x1t regressor is high; in this case, the

Johansen BIC test outperforms all other tests in terms of Type I error. Overall, the

bounds test still appears to be the best choice for minimizing false positives.
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4 Proof of the Equivalence of the Triangular Error-

Correction Representation to the Standard Rep-

resentation

In the main paper the data-generation process (DGP) for the second Monte Carlo

experiment was given by

xkt = xkt−1+νkt (27)

ut = 0.75ut−1+ηt (28)

yt = 0.25x1t + ·+0.25xkt +ut (29)

which is also known as the triangular system error-correction representation (Phillips

1991). The DGP was specified in this way for convenience. Since this is less-

commonly seen than the vector error correction model representation of Johansen

(1991)—which, in turn, is derived from the Granger representation theorem (Engle

and Granger 1987), although one can be derived from the other (Cappuccio and

Lubian 1996)—I show that this DGP is equivalent to standard representations that

can be estimated using a one-step error correction model, such as the one shown in

De Boef and Keele (2008).33

First, consider the three data-generating processes below. Without loss of gener-
33Readers interested in the full analytical derivation of the VECM/MA-AR representation from

the triangular representation should consult Cappuccio and Lubian (1996).
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ality, assume a single regressor, xt , that is weakly exogenous:

xt = xt−1+νt (30)

ut = 0.75ut−1+ηt (31)

yt = 0.25xt +ut (32)

Let νt and ηt be i.i.d. and independent from one another. Next, subtract yt−1 from

either side:

∆yt = yt − yt−1 = 0.25xt +ut − yt−1 (33)

Since yt−1=0.25xt−1+ut−1, and since ut =0.75ut−1+ηt , Equation 33 can be rewritten

as:

∆yt = 0.25∆xt +(0.75−1)ut−1+ηt (34)

and since ut−1 = yt −0.25xt , Equation 34 becomes:

∆yt = 0.25∆xt −0.25(yt−1−0.25xt−1)+ηt (35)

which if estimated using a one-step error-correction model like the one given in

De Boef and Keele (2008), would look like:

∆yt = α0+α∗
1yt−1+β0∆xt +β∗

1xt−1+ηt (36)
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where α0 =0 (since no constant was included in the DGP), the adjustment parameter

is given as α∗
1 = −0.25, the contemporaneous parameter on xt is β0 = 0.25, and the

parameter on the lagged independent variable is β∗
1 = 0.0625.34 In the Monte Carlo

experiment, up to k = 4 independent variables were generated, so each has a long-run

multiplier of 0.25 by construction.

5 Three Replications

5.1 Replication I: Kelly and Enns (2010)

Unit root tests of the first-difference of the regressors (needed to ensure that no series

is greater than I(1)), indicated that first differencing rendered each series stationary.

For the first-difference of Policy Liberalism, an augmented Dickey-Fuller test with one

lag on 34 observations yielded a test statistic of Z(t) =−3.22, which was able to reject

the null hypothesis at the 0.05 level. For the first-difference of Income Inequality, the

same test yielded a test statistic of Z(t) = −6.73, which was statistically significant

at the 0.001 level or better.

Since the initial results from the ARDL model and associated bounds test in the

main paper were inconclusive, the next step was to conduct unit root testing on the

regressors. The results are shown in Table 3. As stated in the main paper, it appears

as though all regressors are non-stationary.
34This is obtained since the coefficient on the lagged independent variable is the long-run multi-

plier times the adjustment parameter, β∗
1 = κ1α∗

1 = 0.0625.
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Table 3: Unit Root Test Statistics for the Regressors in Kelly and Enns (2010)

Unit-Root Test Policy Liberalism Income Inequality
Augmented Dickey-Fuller (with drift) 0.84 -0.44
Phillips-Perron 1.10 -0.56
Dickey-Fuller GLS (with trend) -1.15 -2.72
Elliott-Rothenberg-Stock -1.15 -2.72
Kwiatkowski-Phillips-Schmidt-Shin (H0

= stationary)
1.46∗ 1.75∗

Conclusion I(1) I(1)

Note: ∗ = p < 0.05. 33 observations with 1-year lag included for all tests. H0 = series contains a
unit root.

In addition to modeling support for welfare, Kelly and Enns (2010) also examine

the determinants of public mood liberalism. After first ensuring that public mood

liberalism was I(1) and that none of the regressors were of an order of integration

higher than I(1), I replicated their second model on how inequality affects liberal

mood (Table 1, Model 2, p. 864), as shown in Table 4. I was able to replicate

their results exactly. I found the GECM of Kelly and Enns (2010) to have good

model fit using SBIC. Critically, the residuals were also white-noise. Therefore, I

proceeded to perform the bounds F-test on all variables appearing in levels: public

mood liberalism, policy liberalism, and inequality. The resulting F-statistic is 7.62.

According to Narayan (2005, p. 1990), the critical values (at the 5 percent level) for

two regressors, no trend and an unrestricted intercept for 55 observations is 3.987

and 5.090 for the lower- and upper-bounds, respectively. Given that the F-statistic

falls well above the upper I(1) bound, we are able to reject the null hypothesis of no

cointegration.
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Table 4: Results of the ARDL-Bounds Model for Public Mood Liberalism (Kelly and
Enns 2010)

Original GECM
& ARDL-Bounds

Liberal Moodt−1 -0.25∗
(0.07)

∆Policy Liberalismt 0.10
(0.10)

Policy Liberalismt−1 -0.09∗
(0.02)

∆Inequalityt -27.07
(34.61)

Inequalityt−1 -16.22
(8.92)

Constant 21.70∗
(5.57)

Observations 54
Adjusted R2 0.28
Breusch-Godfrey χ2 of: AR(1) 0.14

AR(2) 0.15
AR(3) 5.46

Durbin’s Alternative χ2 of: AR(1) 0.12
AR(2) 0.13
AR(3) 5.06

Cumby-Huizinga χ2 of AR(1)-AR(3) 8.74∗
Shapiro-Wilk z -1.89

Note: Dependent variable is public mood liberalism. The model shows the results from Kelly and
Enns (2010) (Table 1, Model 1 in their article), which had the best fit as determined by SBIC.
Standard errors in parentheses. ∗= p < 0.05.
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As a robustness check of this finding, I used the bounds t-test to test for the

significance of the lagged dependent variable. Recall that only asymptotic critical

values are available and given by Pesaran, Shin and Smith (2001, p. 303); the I(0)

and I(1) bounds are -2.86 and -3.53, respectively. Even so, the t-statistic on the lag

of liberal mood is -3.85, which falls below the I(1) critical bound. Therefore, the

results from the bounds t-test lends further support to the finding that public mood

liberalism is cointegrating with policy liberalism and inequality.

Taken together, the results in Table 4 suggest that there is cointegration among

public mood liberalism. This lends support to the authors’ conclusions that are

consistent with the Benabou (2000) model; inequality tends to lessen public mood

liberalism in the US.

5.1.1 Different Conclusions About the Time Series Properties of Welfare

Policy Mood

An interesting counterfactual to consider from the main results is whether the main

results would have changed, given alternative conclusions about the time series prop-

erties of the dependent variable: welfare policy mood. As discussed in the main

paper, deciding whether the dependent variable is I(0) or I(1) is crucial, since it

determines whether we need to first difference the series before running the model.

Obviously, unit-root testing on short series such as welfare policy mood (T = 33 in

the models) is very difficult. However, the Phillips-Perron (PP), Dickey-Fuller GLS

(DF-GLS), and Elliott-Rothenberg-Stock (ERS) tests all indicate that the series is
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I(1). Only the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) tests point towards a possibly stationary series, and the latter test

shows very borderline results.

Although the DF-GLS and ERS tests are thought to be superior to the ADF and

Phillips-Perron tests (Maddala and Kim 1998; Choi 2015; Enders 2010), the ADF

test is still very common amongst time series practitioners; a Google Scholar search

for ”Dickey-Fuller” turns up nearly 60,000 results, and their paper has been cited

almost 20,000 times (Dickey and Fuller 1979).

Assuming we only used the ADF test, we might have concluded that welfare policy

mood is stationary. The next step would be to evaluate whether the independent

variables are I(1) (step (c) in the schematic diagram in the main paper). As shown in

Table 3, all unit root tests find evidence that policy liberalism and income inequality

are I(1). We therefore need to first-difference the independent variables (step (f))

before including them in a model where the dependent variable is stationary.

The results of the ARDL model in lagged-dependent variable form are shown in

Table 5. In order to ensure white-noise residuals, the first difference of welfare policy

mood lagged three periods back was included (step (i)). As a result, we end up at

step (j) in the schematic (an ARDL model with the dependent variable estimated

in levels). It is clear from the results that welfare policy mood is relatively strongly

related to its previous levels and past changes. In the short-run, neither change in

policy liberalism nor changes in inequality appear to be related to welfare. These

results echo the findings in the main paper (Table 1, Model 5) that short-run changes
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in these variables are not associated with movements in welfare.

Table 5: Results of Concluding that Welfare Policy Mood is I(0)

ARDL Model
Welfaret−1 0.82∗

(0.06)
∆Welfaret−3 0.46∗

(0.11)
∆Policy Liberalismt 0.09

(0.09)
∆Inequalityt -23.32

(33.04)
Constant 10.87∗

(3.75)
Observations 51
Adjusted R2 0.87
Breusch-Godfrey χ2 of: AR(1) 0.50

AR(2) 0.77
AR(3) 2.56

Durbin’s Alternative χ2 of: AR(1) 0.44
AR(2) 0.67
AR(3) 2.28

Cumby-Huizinga χ2 of AR(1)-AR(3) 2.57
Shapiro-Wilk z -0.44

Note: Dependent variable is welfare policy mood, with lag structures determined by SBIC. Standard
errors in parentheses. ∗= p < 0.05.

However, unlike Table 1, Model 5 in the main paper, the dependent variable in

Table 5 appears in levels and not first differences. Therefore, changes in inequality

and policy liberalism still might have a longer-run effect on welfare policy mood

(although of course this effect will die out over time in a lagged dependent variable

model). To examine this, I used the Stata program dynpss to create expected values
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of welfare policy mood over time in response to a one standard deviation shock to

each of the independent variables at time t = 10 (Philips 2016a).35 The results are

shown in Figure 42. As shown in the plot on the left, positive changes in policy

liberalism have a small increase on the level of welfare policy mood, but this effect is

temporary and not statistically significant. Overall, by deciding that welfare policy

mood is I(0) rather than I(1), we reach a similar substantive conclusion about the

effects of policy liberalism and inequality.
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Figure 42: Policy Liberalism and Inequality’s Effect on Welfare Policy Mood

Note: Plots show dynamic simulation using the ARDL model in Table 42. A 1 standard deviation
increase in each variable occurs at time t = 10. 95% confidence intervals shown.

35Note that these are one standard deviations of the first difference of each variable, not the un-
differenced series. This provides for a more plausible scenario of realistic changes in these variables.
In fact, changes more extreme (i.e., larger than one standard deviation) actually occurred for both
variables over the time period in the sample.
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5.2 Replication II: Volscho and Kelly (2012)

Unit root tests of the first-difference of the regressors indicated that first differencing

rendered each series stationary. For the first-difference of Democratic President, an

augmented Dickey-Fuller test with one lag yielded a test statistic of -5.31, which

was statistically significant at the 0.001 level. For Congressional Democrat, Divided

Government, and Union Membership, the test statistics (and p-values) were -7.60

(0.001), -6.54 (0.001), and -3.37 (0.01) respectively.

As discussed in the main paper, the largest difference between Volscho and Kelly’s

original model and the ARDL-bounds model is the significance of the short-run ef-

fect of a Democratic president. To see if this changes the substantive conclusions of

the authors, I turn to the Stata program dynpss for dynamic interpretations of the

results (Philips 2016a). It uses stochastic simulation to produce 1,000 parameter es-

timates that are multivariate normal, with a mean equal to the estimated parameters

in the results table in the main paper, and variance equal to the estimated variance-

covariance matrix.36 Next, all lagged variables are set to their sample means. All

differenced variables are set to zero, which creates a stable dynamic relationship.

Then, expected values are generated, which now become the new lagged dependent

variable value, and the simulation is repeated again for time t = 2,3, · · · ,25. To gain

dynamic inferences, at time t = 10 a one-period change to one of the independent

variables occurs. This appears in the model first through the differenced independent
36Since the model contains i.i.d. residuals, the asymptotic sampling distribution is multivariate

normal for the coefficients. Variance draws are from a scaled inverse χ2 with (n− k) degrees of
freedom, where n is the number of observations and k is the number of parameters.
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variable, then the lags, as well as any lagged differences. Expected values are then

plotted over time. Measures of certainty are given by 95 percent confidence intervals

calculated using the percentile method, although such confidence intervals tend to be

more conservative than analytical hypothesis testing of coefficients (Philips, Ruther-

ford and Whitten 2016a). Therefore, users should still conduct analytical hypothesis

tests about the significance of individual coefficients.

Results from the dynamic simulations are shown in Figure 43. The plot on

the left shows the effect of moving from a Republican to Democratic president at

time t = 10.37 I show simulations for both the ARDL-bounds approach as well as

Volscho and Kelly’s GECM.38 In the short run, moving from a Republican to a

Democratic president increases the income concentration of the top one percent.

However, this effect loses statistical significance after four years, is not statistically

significantly different from the predictions using Volscho and Kelly’s GECM, and

the long run effect is nearly zero. This is confirmed analytically by calculating the

long-run multiplier, which is 0.36 and is not statistically significantly different from

zero.

The plot on the right in Figure 43 shows the effect of a one standard deviation

decrease in the percent of union membership at time t = 10. While this results in a

small, instantaneous drop at time t = 10 using the ARDL-bounds predictions, this

effect is not statistically significant from the average level of income concentration

of the super-rich. Nor is it statistically significantly different from the Volscho and
37After t = 10, the first-difference of the presidential variable is set back to zero, and the lag of

Democratic President moves from zero to one for the rest of the simulation.
38Pre-shock predicted values differ slightly due to sample size, and are jittered forward for clarity.
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Figure 43: The Substantive Conclusions of Volscho and Kelly (2012) Remain Un-
changed

Note: Plots show dynamic simulations from the Volscho and Kelly results table in the main paper.
All changes occur at t = 10, holding all other variables at their sample means, and (for the plot
on the right) president at its modal value. 95% confidence intervals shown. Volscho and Kelly
simulation jittered forward in time for clarity. Pre-shock predicted values differ slightly due to
sample size.
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Kelly GECM prediction in the short-run. While the two predictions are almost

statistically significantly different from one another when t = 12 and t = 13, they

have similar long-run trajectories in response to a decrease in union membership;

in the long-run the concentration of income by the top one percent increases from

about 14 percent to close to 17 percent.39 While statistically significant, the overall

effects are substantively small, given that a one standard deviation decrease in union

membership would be a very large shift in the structure of the labor market.

5.3 Replication III: Ura (2014)

As a third example of the utility of the approach outlined in the main paper, I

replicate an article by Ura (2014), who uses a GECM to analyze how the ideology of

the US Supreme Court has shaped aggregate public mood from 1956 to 2009. Like

many other examples pointed out by Grant and Lebo (2016), although the choice

to use an error correction model in this article is theoretically justified, there is no

mention of testing for equation balance or the presence of unit roots. To see if this

is the case, I performed the steps for conducting the ARDL procedure.

The first step is to test whether or not the dependent variable, Stimson’s annual

mood index, is I(1). These results are shown in Table 6. The relatively weak power

of the Augmented Dickey-Fuller test in short samples stands out. All other tests

indicate that a unit root is present in the public mood index. Therefore, based on

the conclusions of the majority of the tests, we can conclude that there is an I(1)
39Analytically calculating out the long-run multiplier in Model 2 yields a statistically significant

long-run multiplier of 3.18.
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process, and proceed to model estimation in error-correction form, after ensuring

that all independent variables are I(1) or less. Augmented Dickey-Fuller tests on the

first difference of Policy, Unemployment, Inflation, and the Caselaw Index yielded

test statistics (and significance levels) of -2.61 (0.09), -5.98 (0.001), -6.79 (0.001),

and -3.23 (0.05). Although Policy was borderline I(2) when using the ADF test, the

Phillips-Perron test could reject the null at the 0.01 level.

Table 6: Unit Root Test Statistics (Ura 2014)

Unit-Root Test Public Mood Liberalism
Augmented Dickey-Fuller (with drift) -1.73∗

Phillips-Perron -1.75
Dickey-Fuller GLS (with trend) -1.79
Elliott-Rothenberg-Stock -1.79
Kwiatkowski-Phillips-Schmidt-Shin
(H0 = stationary)

0.89∗

Conclusion: I(1)

Note: ∗ = p < 0.05. 54 observations with 1-year lag included for all tests. H0 = series contains a
unit root for all tests except KPSS.

The second step is to estimate the ARDL model in error-correction form. The

results are shown in Table 7, Model 2. For reference, the original GECM results from

Ura (2014) are also shown in Model 1. Successive lags of the first difference of all

variables were chosen via SBIC—only the lag of the first difference of Unemployment

was needed in order to minimize the information criterion. While theory may have

been used to guide lag specification in Ura (2014), I find that the Cumby-Huizinga

test for autocorrelation finds evidence of up to an AR(3) process at the .05 level, and

both the Breusch-Godfrey and Durbin’s Alternative LM test suggest that there is an
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AR(3) process at the .10 level of significance. This autocorrelation was eliminated

by adding the lag of the first difference of unemployment, as shown in the second

model in Table 7. Across both models, the Cook-Weisberg and Shapiro-Wilk tests

find no evidence of heteroskedasticity or violation of normality, respectively.

After ensuring that we have a stable model, we can then use the bounds proce-

dure of Pesaran, Shin and Smith (2001) to test if there is a cointegrating relation-

ship between public mood, Supreme Court and Congressional liberalism, inflation,

and unemployment. Running a joint F-test that all of the lagged coefficients are

jointly equal to zero (i.e. Moodt−1, Policyt−1, Unemploymentt−1, In f lationt−1, and

Caselaw Indext−1) yields a F-statistic of 5.15. Using the critical values provided in

Narayan (2005) for k = 4 independent variables, and assuming an unrestricted con-

stant and no trend, it is clear that the F-statistic exceeds the upper I(1) bound of

4.334 at the 95 percent level of significance.40 We can also use the one-sided test on

the significance of the lagged dependent variable to confirm the F-test. Although the

the t-statistic on Moodt−1, -3.19, lies within the stationary and I(1) bounds, which

suggests that individual cointegration testing is necessary (-2.86 and -3.99, respec-

tively, as given in Pesaran, Shin and Smith (2001)), these are asymptotic critical

values and the result of the t-statistic still suggests that it is near the I(1) bound.

Therefore, we can conclude that a cointegrating relationship is present in this exam-

ple.

Looking back at Table 7, most of the results appear to hold across both specifica-
40By construction, if the I(1) bound is exceeded for the F-test, the stationary bound (3.068 in

this case) is exceeded.
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Table 7: Results of the ARDL Model (Ura 2014)

(1) (2)
Original GECM ARDL Model

Moodt−1 -0.28∗∗∗ (0.08) -0.24∗∗∗ (0.08)
∆Policyt 0.07 (0.07) 0.05 (0.07)
Policyt−1 -0.07∗∗∗ (0.02) -0.07∗∗∗ (0.02)
∆Unemploymentt -0.32 (0.27) -0.11 (0.27)
∆Unemploymentt−1 -0.54∗∗ (0.24)
Unemploymentt−1 -0.24 (0.19) -0.02 (0.20)
∆Inflationt -0.30∗∗ (0.13) -0.31∗∗ (0.12)
Inflationt−1 -0.29∗∗ (0.13) -0.30∗∗ (0.12)
∆Caselaw Indext -0.09∗∗ (0.04) -0.09∗∗ (0.04)
Caselaw Indext−1 0.02∗∗ (0.01) 0.03∗∗ (0.01)
Constant 19.49∗∗∗ (5.14) 15.65∗∗∗ (5.05)
Observations 54 53
Adjusted R2 0.30 0.34
Breusch-Godfrey’s χ2 of: AR(1) 1.84 0.20

AR(2) 1.96 0.65
AR(3) 7.29∗ 3.06

Durbins’s Alternative’s χ2 of: AR(1) 1.51 0.16
AR(2) 1.58 0.50
AR(3) 6.40∗ 2.39

Cumby-Huizinga χ2 of AR(1)-AR(3) 7.95∗∗ 4.23
Shapiro-Wilk’s z -0.35 0.62

Note: Model 1 shows results from Ura (2014) and Model 2 shows results using ARDL procedure,
with lag structure determined by SBIC. Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

110



tions. The adjustment parameter, Moodt−1, is only slightly smaller, which indicates

a slower rate of return to equilibrium. The variables for the Supreme Court’s liber-

alism (Caselaw Index), the Inflation level of the US, and the index of Congressional

liberalism in policy passage (Policy) are virtually the same across model specifica-

tions. The one large difference is the variable for unemployment. While Ura (2014)

found that unemployment had no effect on policy mood (in both the short and

long-run via calculation of the long-run multiplier), the ARDL model suggests that

unemployment may actually make public mood more conservative.

To see the substantive implications of this, I plot the result of a one standard

deviation increase in unemployment (about 1.38 percentage points) using the pro-

gram dynpss (Philips 2016a). The results are shown in Figure 44. The left-side plot

shows the one standard deviation increase in unemployment, holding all else equal,

while the right-side plot shows a one standard deviation increase in the Caselaw

Index—which is similar to the figure shown in Ura (2014, pg. 120).

It is clear that the small move towards a more conservative public mood due to

an increase in unemployment is not statistically significant. This stands in contrast

with a one standard deviation increase in the liberal stance of the Supreme Court (as

proxied by the caselaw index)—public mood grows more conservative in the short

run, becomes larger than the average public mood after just five years, and eventually

moves to a new equilibrium where public mood equals 62. Therefore, in the long-run

the public becomes more liberal—by about four points on the policy mood scale—in

response to a more liberal Supreme Court.
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Figure 44: The Substantive Results of Ura (2014) Hold

Note: Plots show dynamic simulation using the ARDL model in Table 7. A 1 standard deviation
increase in each variable occurs at time t = 10. 95% confidence intervals shown.

5.4 A Comparison of the Replications to the Replications of

Grant and Lebo (2016)

In their Supplemental Materials, Grant and Lebo (2016) (henceforth GL) also repli-

cate Kelly and Enns (2010) (KE) and Volscho and Kelly (2012) (VK). I briefly

summarize the findings of GL and comment on their similarities and differences to

my findings below.

Turning the the KE replication, GL find evidence that Welfare Support is I(1); this

is consistent with the findings in the main paper. GL then examine the Type I error

rates of the adjustment parameter by regressing each of KE’s dependent variables on

randomly generated I(1) series. They find that the adjustment parameter on Welfare

Support (the dependent variable of the model I replicate in the main paper in Table

1) is spuriously significant about 85 percent of the time when using one-tailed t-tests,
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but only about 1.3 percent when using the appropriate MacKinnon values.41 They

also include two independent variables (beef consumption and coal emissions) that

should be unrelated to Welfare Support. However, they find that although these

“nonsense” variables were insignificant (for their lags and first differences), there was

still a significant adjustment parameter. Last, GL run a fractional error-correction

model on Welfare Support, and fail to find evidence of fractional cointegration.

In the main paper, I took a slightly different approach to replicating KE, but

largely arrived at the same conclusions as GL. In Table 1 in the main paper, I

also have significant adjustment parameters (as judged by a two-tail t-test). Using

the bounds procedure recommended in the main paper, I could find no evidence of

cointegration, and as GL discuss, there appears to be no fractional cointegration

either. Therefore, policy liberalism and income inequality may still affect public

mood towards welfare policy, but only in the short-run. In both GL and my analysis,

there does not appear to be a long-run relationship.

GL also replicate VK in their Supplemental Materials. They note that VK say

they have a mix of I(1) and I(0) independent variables. GL then estimate a fractional

error-correction model, finding that only market factors seem to affect the concen-

tration of income of the top one percent. Note that while GL test all models in VK,

I examine only a single model.

In the main paper, I tested the main dependent variable of VK, Top 1% Share,
41GL also regress a randomly-generated bounded series on the independent variables in KE’s

models; again finding extremely high rates of significant adjustment parameters (using one-tailed
t-tests), and much lower (though still greater than five percent) rates when using the appropriate
MacKinnon critical values.
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and find evidence of a unit root. This is largely confirmed by the estimation of the

d parameter that GL find, once standard errors are taken into account.42 However,

while I find evidence of cointegration using the bounds procedure for VK’s model,

GL find no evidence using their three-step fractional error-correction model that a

Democratic president, the percentage of congressional Democrats, and union mem-

bership affect the Top 1% Share. They do, however, find that in the short run a

Democratic president increases the income concentration of the super-rich (a finding

confirmed by my analysis in the main paper).

To conclude, my findings largely confirm the replication of KE that GL perform;

neither find evidence of a cointegrating relationship. In contrast, while my replication

of VK found evidence of cointegration when using the bounds test, GL did not find

any evidence of cointegration when using a fraction error-correction model.

42GL find d = 0.93 with an asymptotic standard error of 0.10.
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